Advertisement

Journal of Materials Science

, Volume 50, Issue 20, pp 6578–6585 | Cite as

Novel felt pseudocapacitor based on carbon nanotube/metal oxides

  • Derrick W. H. Fam
  • Sue Azoubel
  • Liang Liu
  • Jingfeng Huang
  • Daniel Mandler
  • Shlomo Magdassi
  • Alfred I. Y. Tok
Original Paper

Abstract

This work describes a novel supercapacitor electrode based on a glass fiber felt substrate, single-walled carbon nanotube (SWCNT) and metal oxide layers (RuO2 or MnO2). It is fabricated by the repeated and alternate deposition of SWCNTs and metal oxides via dipping and electrodeposition, respectively, to achieve three-dimensional layered hierarchical structured supercapacitor electrodes. The results show that the layered structured electrodes fabricated by alternating deposition of SWCNTs and metal oxides have higher capacitance as compared with the bulk deposited samples, which are fabricated by deposition of SWCNTs followed by metal oxides. The best configuration studied in this work shows specific capacitance of 72 and 98 F/g for the SWCNT–MnO2 and SWCNT–RuO2, respectively, whereas the corresponding areal capacitances are 0.07 and 0.09 F/cm2. This three-dimensional porous electrode structure design combines the high mechanical stability of the felt substrate with the high conductivity and specific surface area of SWCNTs, and the high capacitance of metal oxides. This will add immensely to the research and development of wearable lightweight electronics in harsh environments.

Keywords

Cyclic Voltammetry MnO2 Specific Capacitance Electric Double Layer RuO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This Research was conducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE), which is supported by the National Research Foundation, Prime Minister’s Office, Singapore.

References

  1. 1.
    Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater 14(5):382–385. doi: 10.1002/1521-4095(20020304)14:5<382:aid-adma382>3.0.co;2-y CrossRefGoogle Scholar
  2. 2.
    Khomenko V, Frackowiak E, Beguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506. doi: 10.1016/j.electacta.2004.10.078 CrossRefGoogle Scholar
  3. 3.
    Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56(22):7460–7466. doi: 10.1016/j.electacta.2011.06.113 CrossRefGoogle Scholar
  4. 4.
    Li J, Xie H, Li Y, Liu J, Li Z (2011) Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J Power Sources 196(24):10775–10781. doi: 10.1016/j.jpowsour.2011.08.105 CrossRefGoogle Scholar
  5. 5.
    Ting W, Kiebele A, Ma J, Mhaisalkar S, Gruner G (2011) Charge transfer between polyaniline and carbon nanotubes supercapacitors: improving both energy and power densities. J Electrochem Soc 158(1):A1–A5. doi: 10.1149/1.3505994 CrossRefGoogle Scholar
  6. 6.
    Zhong-Shuai W, Da-Wei W, Wencai R, Jinping Z, Guangmin Z, Feng L, Hui-Ming C (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Func Mater 20(20):3595–3602. doi: 10.1002/adfm.201001054 CrossRefGoogle Scholar
  7. 7.
    Kim I-H, Kim J-H, Kim K-B (2005) Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochem Solid-State Lett 8(7):A369–A372. doi: 10.1149/1.1925067 CrossRefGoogle Scholar
  8. 8.
    Dandan Z, Zhi Y, Liying Z, Xinliang F, Yafei Z (2011) Electrodeposited manganese oxide on nickel foam-supported carbon nanotubes for electrode of supercapacitors. Electrochem Solid-State Lett 14(6):93–96. doi: 10.1149/1.3562927 CrossRefGoogle Scholar
  9. 9.
    Yuan L, Lu X-H, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang ZL (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661. doi: 10.1021/nn2041279 CrossRefGoogle Scholar
  10. 10.
    Chen Z, Augustyn V, Wen J, Zhang Y, Shen M, Dunn B, Lu Y (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23(6):791–795. doi: 10.1002/adma.201003658 CrossRefGoogle Scholar
  11. 11.
    Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18(7):777–788. doi: 10.1016/j.pnsc.2008.03.002 CrossRefGoogle Scholar
  12. 12.
    de las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85. doi: 10.1016/j.jpowsour.2012.02.013 CrossRefGoogle Scholar
  13. 13.
    Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514CrossRefGoogle Scholar
  14. 14.
    Parkash S (1974) Adsorption of weak and non-electrolytes by activated carbon. Carbon 12(1):37–43. doi: 10.1016/0008-6223(74)90038-4 CrossRefGoogle Scholar
  15. 15.
    Liu K, Sun Y, Zhou R, Zhu H, Wang J, Liu L, Fan S, Jiang K (2010) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21(4):045708. doi: 10.1088/0957-4484/21/4/045708 CrossRefGoogle Scholar
  16. 16.
    Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784. doi: 10.1039/c1jm14468e CrossRefGoogle Scholar
  17. 17.
    Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668. doi: 10.1007/s11671-009-9508-2 CrossRefGoogle Scholar
  18. 18.
    Liu X, Pickup PG (2011) Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors. J Electrochem Soc 158(3):A241–A249. doi: 10.1149/1.3525591 CrossRefGoogle Scholar
  19. 19.
    Park JH, Ko JM, Park OO (2003) Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J Electrochem Soc 150(7):A864–A867. doi: 10.1149/1.1576222 CrossRefGoogle Scholar
  20. 20.
    Kim Y-T, Tadai K, Mitani T (2005) Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J Mater Chem 15(46):4914–4921. doi: 10.1039/b511869g CrossRefGoogle Scholar
  21. 21.
    Hsieh T-F, Chuang C-C, Chen W-J, Huang J-H, Chen W-T, Shu C-M (2012) Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors. Carbon 50(5):1740–1747. doi: 10.1016/j.carbon.2011.12.017 CrossRefGoogle Scholar
  22. 22.
    Kim I-H, Kim J-H, Lee Y-H, Kim K-B (2005) Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. J Electrochem Soc 152(11):A2170–A2178. doi: 10.1149/1.2041147 CrossRefGoogle Scholar
  23. 23.
    Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733. doi: 10.1021/nl101723g CrossRefGoogle Scholar
  24. 24.
    Sang-Bok M, Kyung-Wan N, Won-Sub Y, Xiao-Qing Y, Kyun-Young A, Ki-Hwan O, Kwang-Bum K (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178(1):483–489. doi: 10.1016/j.jpowsour.2007.12.027 CrossRefGoogle Scholar
  25. 25.
    Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 196(13):5779–5783. doi: 10.1016/j.jpowsour.2011.02.029 CrossRefGoogle Scholar
  26. 26.
    Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z, Zaera F, Ozkan M, Ozkan CS (2014) Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep. doi: 10.1038/srep04452 Google Scholar
  27. 27.
    Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181. doi: 10.1016/j.electacta.2005.01.038 CrossRefGoogle Scholar
  28. 28.
    Moore JJ, Kang JH, Wen JZ (2012) Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Mater Chem Phys 134(1):68–73. doi: 10.1016/j.matchemphys.2012.02.030 CrossRefGoogle Scholar
  29. 29.
    Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P (2005) Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18):8487–8494. doi: 10.1021/la051499j CrossRefGoogle Scholar
  30. 30.
    Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470CrossRefGoogle Scholar
  31. 31.
    Il-Hwan K, Jae-Hong K, Kwang-Bum K (2005) Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochem Solid-State Lett 8(7):369–372. doi: 10.1149/1.1925067 CrossRefGoogle Scholar
  32. 32.
    Lv P, Zhang P, Feng Y, Li Y, Feng W (2012) High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric. Electrochim Acta 78:515–523. doi: 10.1016/j.electacta.2012.06.085 CrossRefGoogle Scholar
  33. 33.
    Rakhi RB, Cha D, Chen W, Alshareef HN (2011) Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles. J Phys Chem C 115(29):14392–14399. doi: 10.1021/jp202519e CrossRefGoogle Scholar
  34. 34.
    Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911. doi: 10.1021/nl2013828 CrossRefGoogle Scholar
  35. 35.
    Masarapu C, Zeng HF, Hung KH, Wei B (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3(8):2199–2206. doi: 10.1021/nn900500n CrossRefGoogle Scholar
  36. 36.
    Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB (2012) All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta 59:296–303. doi: 10.1016/j.electacta.2011.10.102 CrossRefGoogle Scholar
  37. 37.
    Dileo RA, Castiglia A, Ganter MJ, Rogers RE, Cress CD, Raffaelle RP, Landi BJ (2010) Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries. ACS Nano 4(10):6121–6131. doi: 10.1021/nn1018494 CrossRefGoogle Scholar
  38. 38.
    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482. doi: 10.1063/1.118568 CrossRefGoogle Scholar
  39. 39.
    Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous and conductive energy textiles. Nano Lett 10(2):708–714. doi: 10.1021/nl903949m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Derrick W. H. Fam
    • 1
  • Sue Azoubel
    • 2
  • Liang Liu
    • 1
    • 2
  • Jingfeng Huang
    • 1
  • Daniel Mandler
    • 2
  • Shlomo Magdassi
    • 2
  • Alfred I. Y. Tok
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations