Advertisement

Journal of Materials Science

, Volume 50, Issue 18, pp 6124–6133 | Cite as

PVP a binder for the manufacture of ultrathin ITO/polymer nanocomposite films with improved electrical conductivity

  • Moritz Wegener
  • Minato Kato
  • Ken-ichi Kakimoto
  • Stefanie Spallek
  • Erdmann Spiecker
  • Andreas Roosen
Original Paper

Abstract

This paper presents the manufacture of ultrathin (<1 µm) transparent conductive indium tin oxide (ITO) films based on nanoparticulate ITO slurries by the profile rod technique using the binder polyvinyl pyrrolidone (PVP) as an organic additive. The influence of the slurry composition on the film thickness and the specific electrical resistance as well as the transmission of the dried films is evaluated. The organic solvent ethanol and different types of the PVP binder were tested for slurry preparation and layer performance. ITO green films with low specific electrical resistance of 3 Ω cm, 87 % inline transmission, and layer thicknesses of only 250 nm could be manufactured. Furthermore, the influence of heat treatments up to 400 °C on the electrical properties of the ITO films was evaluated.

Keywords

Casting Speed Specific Electrical Resistance Green Tape Green Film Slurry Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the German Research Foundation (DFG, Graduiertenkolleg 1161), as well as the support of our industrial partner Evonik Industries AG, Essen, Germany, is gratefully acknowledged. The authors thank Rubitha Srikantharajah for the scanning electron microscope images of the dried ITO agglomerates (Figs. 7, 9).

References

  1. 1.
    Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20(4):S35–S44CrossRefGoogle Scholar
  2. 2.
    Granqvist CG, Hultåker A (2002) Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411(1):1–5CrossRefGoogle Scholar
  3. 3.
    Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515(15):6000–6014CrossRefGoogle Scholar
  4. 4.
    Liu H, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H (2010) Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct 48(5):458–484CrossRefGoogle Scholar
  5. 5.
    Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25(08):52–57CrossRefGoogle Scholar
  6. 6.
    Straue N, Rauscher M, Walther S, Faber H, Roosen A (2009) Preparation and soft lithographic printing of nano-sized ITO-dispersions for the manufacture of electrodes for TFTs. J Mater Sci 44(22):6011–6019 doi: 10.1007/s10853-009-3804-1 CrossRefGoogle Scholar
  7. 7.
    Gläser HJ (2000) Large area glass coating, 1st edn. Von Ardenne Anlagentechnik, DresdenGoogle Scholar
  8. 8.
    Gross M, Winnacker A, Wellmann PJ (2007) Electrical, optical and morphological properties of nanoparticle indium–tin–oxide layers. Thin Solid Films 515(24):8567–8572CrossRefGoogle Scholar
  9. 9.
    Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48(4):1623–1631. doi: 10.1007/s10853-012-6919-8 CrossRefGoogle Scholar
  10. 10.
    Hwang M, Jeong B, Moon J, Chun S, Kim J (2011) Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Mater Sci Eng, B 176(14):1128–1131CrossRefGoogle Scholar
  11. 11.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22(6):673–685CrossRefGoogle Scholar
  12. 12.
    Le Hue P (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62Google Scholar
  13. 13.
    Wegener M, Gillert M, Durst F, Roosen A (2013) Fabrication of functional nanoparticulate coating in the submicrometer range with the slot die process. cfi/Ber. DKG 90(10):E35–E42Google Scholar
  14. 14.
    Wegener M, Eckert D, Roosen A (2015) Manufacture of sub-μm thin, particulate-based ITO layers by roller coating. J Eur Ceram Soc 35(8):2321–2332CrossRefGoogle Scholar
  15. 15.
    Ederth J, Heszler P, Hultåker A, Niklasson G, Granqvist C (2003) Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445(2):199–206CrossRefGoogle Scholar
  16. 16.
    Al-Dahoudi N, Aegerter MA (2006) Comparative study of transparent conductive In2O3: Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502(1–2):193–197CrossRefGoogle Scholar
  17. 17.
    Straue N, Rauscher M, Dressler M, Roosen A (2012) Tape casting of ITO green tapes for flexible electroluminescent lamps. J Am Ceram Soc 95(2):684–689CrossRefGoogle Scholar
  18. 18.
    Gross M, Linse N, Maksimenko I, Wellmann PJ (2009) Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices. Adv Eng Mater 11(4):295–301CrossRefGoogle Scholar
  19. 19.
    Königer T, Münstedt H (2009) Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings. J Mater Sci 44(11):2736–2742. doi: 10.1007/s10853-009-3357-3 CrossRefGoogle Scholar
  20. 20.
    Lutz C, Roosen A (1998) Wetting behavior of tape casting slurries on polymeric tape carriers. Ceram Trans 83:163–170Google Scholar
  21. 21.
    Nahass P, Pober RL, Rhine WE, Robbins WL, Bowen HK (1990) A comparison of aqueous and non-aqueous slurries for tape casting. Ceram Trans 15:355–364Google Scholar
  22. 22.
    Feng J, Dogan F (2000) Aqueous processing and mechanical properties of PLZT green tapes. Mater Sci Eng, A 283(1–2):56–64CrossRefGoogle Scholar
  23. 23.
    Doreau F, Tarì G, Pagnoux C, Chartier T, Ferreira J (1998) Processing of aqueous tape-casting of alumina with acrylic emulsion binders. J Eur Ceram Soc 18(4):311–321CrossRefGoogle Scholar
  24. 24.
    Ryu BH, Takahashi M, Suzuki S (1990) Rheological characteristics of aqueous tape-casting of alumina with acrylic emulsion binder. J Ceram Soc Jpn 6(101):626–631Google Scholar
  25. 25.
    Chartier T, Bruneau A (1993) Aqueous tape casting of alumina substrates. J Eur Ceram Soc 12(4):243–247CrossRefGoogle Scholar
  26. 26.
    Hotza D, Greil P (1995) Review: aqueous tape casting of ceramic powders. Mater Sci Eng, A 202(1–2):206–217CrossRefGoogle Scholar
  27. 27.
    Raeder H, Simon C, Chartier T, Toftegaard HL (1994) Tape casting of zirconia for ion conducting membranes: a study of dispersants. J Eur Ceram Soc 13(6):485–491CrossRefGoogle Scholar
  28. 28.
    Roosen A, Hessel F, Fischer H, Aldinger F (1990) Interaction of Polyvinylbutyral with alumina. Ceram Trans 12:451–459Google Scholar
  29. 29.
  30. 30.
  31. 31.
    Reindl A, Mahajeri M, Hanft J, Peukert W (2009) The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films. Thin Solid Films 517(5):1624–1629CrossRefGoogle Scholar
  32. 32.
    Ahmad B, Ahmad N, Saeed A, Islam N (1995) Rheology of poly(vinyl pyrrolidone) in aqueous and organic media. J Chem Soc Pak 17(1):7–10Google Scholar
  33. 33.
    Zhang J, Jiang D, Lin Q (2005) Poly(vinyl pyrrolidone), a dispersant for non-aqueous processing of silicon carbide. J Am Ceram Soc 88(4):1054–1056CrossRefGoogle Scholar
  34. 34.
    König Tobias A F, Ledin PA, Kerszulis J, Mahmoud MA, El-Sayed MA, Reynolds JR, Tsukruk VV (2014) Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8(6):6182–6192CrossRefGoogle Scholar
  35. 35.
    Hunt AG, Ewing RP (2009) Percolation theory for flow in porous media, 2nd edn. Lecture notes in physics vol 771. Springer, BerlinGoogle Scholar
  36. 36.
    Guido Falk (ed) (2012) Sintering of Transparent Conductive Oxides: From Oxide Ceramic Powders to Advanced Optoelectronic Materials. INTECH Open Access PublisherGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Moritz Wegener
    • 1
  • Minato Kato
    • 2
  • Ken-ichi Kakimoto
    • 2
  • Stefanie Spallek
    • 3
  • Erdmann Spiecker
    • 3
  • Andreas Roosen
    • 1
  1. 1.Department of Materials Science, Glass and CeramicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Materials Science and Engineering, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan
  3. 3.Center for Nanoanalysis and Electron Microscopy (CENEM)University of Erlangen-NurembergErlangenGermany

Personalised recommendations