Journal of Materials Science

, Volume 50, Issue 19, pp 6302–6312 | Cite as

Development of cation exchange resin-polymer electrolyte membranes for microbial fuel cell application

  • Prabhu Narayanaswamy Venkatesan
  • Sangeetha Dharmalingam
Original Paper


A new class of composite membranes was made based on sulfonated poly ether ether ketone (SPEEK) incorporated with micron-sized sulfonate styrene-crosslinked divinyl benzene-based cation exchange resin particles as fillers with desired properties of higher ion exchange capacity, lower oxygen crossover, lesser mono, and divalent alkali cation transport for microbial fuel cell (MFC) applications. Such cation exchange resin-based composite membranes showed good membrane homogeneity as revealed from SEM images. XRD patterns showed better amorphous nature for the composite membranes with increase in resin loading. FT-IR spectra of composite membranes showed the presence of hydrogen bonding between the sulfonated PEEK and resin. The effects of existence of hydrogen bonding in the properties of membranes such as water uptake, transport of cations other than proton, oxygen crossover, and proton conductivity were discussed. The composite membranes showed one order lesser oxygen mass transfer coefficient (K o) in the range of 10−6 cm/s when compared to Nafion membranes. The composite membranes were tested in a single chamber Pt/C-coated air cathode MFC with Escherichia coli as anodic microbial inoculum. With resin, the SPEEK composite membranes showed higher power density value of 410 mW/m2 for 7.5 % IER + SPEEK composite membrane compared to that of Nafion (47 mW/m2) and SPEEK (77 mW/m2) membranes with same configuration.


Proton Conductivity Composite Membrane Microbial Fuel Cell Polymer Electrolyte Membrane Anode Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Department of Science and Technology (DST) India, for their financial support to carry out this work vide letter No. DST/TSG/AF/2010/09, dt. 01-10-2010.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ghasemi M, Daud WRW, Ismail AF et al (2013) Simultaneous wastewater treatment and electricity generation by microbial fuel cell: Performance comparison and cost investigation of using Nafion 117 and SPEEK as separators. Desalination 325:1–6CrossRefGoogle Scholar
  2. 2.
    Ghadge AN, Sreemannarayana M, Duteanu N, Ghangrekar MM (2014) Influence of ceramic separator’s characteristics on microbial fuel cell performance. J Electrochem Sci Eng 4:315–326CrossRefGoogle Scholar
  3. 3.
    Kim JR, Premier GC, Hawkes FR et al (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sources 187:393–399CrossRefGoogle Scholar
  4. 4.
    You S, Zhao Q, Zhang J et al (2006) A microbial fuel cell using permanganate as the cathodic electron acceptor. J Power Sources 162:1409–1415CrossRefGoogle Scholar
  5. 5.
    Gil G, Chang I, Kim BH et al (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334CrossRefGoogle Scholar
  6. 6.
    Zhao C, Gai P, Liu C et al (2013) Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J Mater Chem A 1:12587–12594CrossRefGoogle Scholar
  7. 7.
    Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493CrossRefGoogle Scholar
  8. 8.
    Zhang X, Cheng S, Wang X et al (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461CrossRefGoogle Scholar
  9. 9.
    Kim JR, Cheng S, Oh S, LOGAN BE (2007) Power generation using different cation, anion and ultrafilatration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009CrossRefGoogle Scholar
  10. 10.
    Kim IS, Chae K, Choi M, Verstraete W (2008) Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13:51–65CrossRefGoogle Scholar
  11. 11.
    Chae KJ, Choi M, Ajayi FF et al (2008) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuels 22:169–176CrossRefGoogle Scholar
  12. 12.
    Zhang X, Cheng S, Huang X, Logan BE (2010) The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ Sci 3:659–664CrossRefGoogle Scholar
  13. 13.
    Li W-W, Sheng G-P, Liu X-W, Yu H-Q (2011) Recent advances in the separators for microbial fuel cells. Bioresour Technol 102:244–252CrossRefGoogle Scholar
  14. 14.
    Ayyaru S, Dharmalingam S (2013) Improved performance of microbial fuel cells using sulfonated polyether ether ketone (SPEEK) TiO2–SO3H nanocomposite membrane. RSC Adv 3:25243–25251CrossRefGoogle Scholar
  15. 15.
    Ayyaru S, Letchoumanane P, Dharmalingam S, Stanislaus AR (2012) Performance of sulfonated polystyrene-ethylene-butylene-polystyrene membrane in microbial fuel cell for bioelectricity production. J Power Sources 217:204–208CrossRefGoogle Scholar
  16. 16.
    Ayyaru S, Dharmalingam S (2011) Development of MFC using sulphonated polyether ether ketone (SPEEK) membrane for electricity generation from waste water. Bioresour Technol 102:11167–11171CrossRefGoogle Scholar
  17. 17.
    Rahimnejad M, Ghasemi M, Najafpour GD et al (2011) Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 85:700–706CrossRefGoogle Scholar
  18. 18.
    Venkatesan Prabhu N, Sangeetha D (2014) Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell. Chem Eng J 243:564–571CrossRefGoogle Scholar
  19. 19.
    Yang B, Manthiram A (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem Solid-State Lett 6:A229–A231CrossRefGoogle Scholar
  20. 20.
    Lim SS, Daud WRW, Md Jahim J et al (2012) Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrog Energy 37:11409–11424CrossRefGoogle Scholar
  21. 21.
    Choi Y, Kim Y, Kim HK, Lee JS (2010) Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic-inorganic composite membranes. J Membr Sci 357:199–205CrossRefGoogle Scholar
  22. 22.
    Rhee CH, Kim Y, Lee JS et al (2006) Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells. J Power Sources 159:1015–1024CrossRefGoogle Scholar
  23. 23.
    Chen SL, Krishnan L, Srinivasan S et al (2004) Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells. J Membr Sci 243:327–333CrossRefGoogle Scholar
  24. 24.
    Zagorodni AA (2006) Ion exchange materials: properties and applications: properties and applications. Elsevier Science, AmsterdamGoogle Scholar
  25. 25.
    Dow Chemical Company (1999) Dowex ion exchange resins: fundamentals of ion exchange. Met Finish 97:69–70Google Scholar
  26. 26.
    Guhan S, Venkatesan Prabhu N, Sangeetha D (2011) Development of sulfonated poly (ether ether ketone) electrolyte membrane for applications in hydrogen sensor. Polym Sci Ser A 53:1159–1166CrossRefGoogle Scholar
  27. 27.
    Rozendal R, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211CrossRefGoogle Scholar
  28. 28.
    Lefebvre O, Shen Y, Tan Z et al (2011) A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol 102:6291–6294CrossRefGoogle Scholar
  29. 29.
    Venkatesan Prabhu N, Dharmalingam S (2013) Characterization and performance study on chitosan-functionalized multi walled carbon nano tube as separator in microbial fuel cell. J Membr Sci 435:92–98CrossRefGoogle Scholar
  30. 30.
    Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425–426:11–22CrossRefGoogle Scholar
  31. 31.
    Gosalawit R, Chirachanchai S, Shishatskiy S, Nunes SP (2008) Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). J Membr Sci 323:337–346CrossRefGoogle Scholar
  32. 32.
    Auimviriyavat J, Changkhamchom S, Sirivat A (2011) Development of poly(ether ether ketone) (Peek) with inorganic filler for direct methanol fuel cells (DMFCS). Ind Eng Chem Res 50:12527–12533CrossRefGoogle Scholar
  33. 33.
    Fathy M, Abdel T, Alblehy AEAA, Alblehy AbdElhamid (2014) Cation exchange resin nanocomposites based on multi-walled carbon nanotubes. Appl Nanosci 4:103–112CrossRefGoogle Scholar
  34. 34.
    Vinodh R, Purushothaman M, Sangeetha D (2011) Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Int J Hydrog Energy 36:7291–7302CrossRefGoogle Scholar
  35. 35.
    Wang ED, Zhao TS, Yang WW (2010) Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. Int J Hydrog Energy 35:2183–2189CrossRefGoogle Scholar
  36. 36.
    Khodabakhshi AR, Madaeni SS, Hosseini SM (2010) Comparative studies on morphological, electrochemical, and mechanical properties of S -polyvinyl chloride based heterogeneous cation-exchange membranes with different resin ratio loading. Ind Eng Chem Res 49:8477–8487CrossRefGoogle Scholar
  37. 37.
    Kongkachuichay P, Pimprom S (2010) Nafion/Analcime and Nafion/Faujasite composite membranes for polymer electrolyte membrane fuel cells. Chem Eng Res Des 88:496–500CrossRefGoogle Scholar
  38. 38.
    Tao H-C, Sun X-N, Xiong Y (2015) A novel hybrid anion exchange membrane for high performance microbial fuel cells. RSC Adv 5:4659–4663CrossRefGoogle Scholar
  39. 39.
    Persson I (2010) Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl Chem 82:1901–1917CrossRefGoogle Scholar
  40. 40.
    Nunes SP, Peinemann K (2006) Membrane technology. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  41. 41.
    Sata T (2004) Ion exchange membranes—preparation, characterization, modification and application. RSC, LondonGoogle Scholar
  42. 42.
    Teng X, Zhao Y, Xi J et al (2009) Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J Membr Sci 341:149–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Prabhu Narayanaswamy Venkatesan
    • 1
  • Sangeetha Dharmalingam
    • 1
  1. 1.Department of Mechanical EngineeringAnna UniversityChennaiIndia

Personalised recommendations