Advertisement

Journal of Materials Science

, Volume 50, Issue 17, pp 5777–5787 | Cite as

Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study

  • A. Pimentel
  • J. Rodrigues
  • P. Duarte
  • D. Nunes
  • F. M. Costa
  • T. Monteiro
  • R. Martins
  • E. Fortunato
Original Paper

Abstract

The present work reports the synthesis of zinc oxide (ZnO) nanoparticles with hexagonal wurtzite structure considering a solvothermal method assisted by microwave radiation and using different solvents: water (H2O), 2-ethoxyethanol (ET) and ethylene glycol (EG). The structural characterization of the produced ZnO nanoparticles has been accessed by scanning electron microscopy, X-ray diffraction, room-temperature photoluminescence and Raman spectroscopies. Different morphologies have been obtained with the solvents tested. Both H2O and ET resulted in rods with high aspect ratio, while EG leads to flower-like structure. The UV absorption spectra showed peaks with an orange shift for synthesis with H2O and ET and blue shift for synthesis with EG. The different synthesized nanostructures were tested for photocatalyst applications, revealing that the ZnO nanoparticles produced with ET degrade faster the molecule used as model dye pollutant, i.e. methylene blue.

Graphical Abstract

Keywords

Methylene Blue Photocatalytic Activity Microwave Radiation Hexagonal Wurtzite Structure Crystal Facet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been financed by the European Commission under Projects INVISIBLE (FP7 ERC AdG No 228144), and ORAMA CP-IP 246334-2, by FEDER funds through the COMPETE 2020 programme and the Portuguese Science Foundation (FCT-MEC) through BPD/76992/2011 and the Projects UID/CTM/50025/2013, EXCL/CTM-NAN/0201/2012, PTDC/CTM-POL/1484/2012, RECI/FIS-NAN/0183/2012 (FCOMP-01-0124-FEDER- 027494). J. Rodrigues thanks FCT for her PhD Grant, SFRH/BD/76300/2011.

References

  1. 1.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys 16:R829–R858. doi: 10.1088/0953-8984/16/25/R01 Google Scholar
  2. 2.
    Coleman VA, Jagadish C (2006) Chapter 1—basic properties and applications of ZnO. In: Jagadish C, Pearton S (eds) Zinc oxide bulk, thin film. Nanostructures, Elsevier Science Ltd, Oxford, pp 1–20CrossRefGoogle Scholar
  3. 3.
    Fortunato E, Pimentel A, Pereira L et al (2004) High field-effect mobility zinc oxide thin film transistors produced at room temperature. J Non Cryst Solids 338–340:806–809. doi: 10.1016/j.jnoncrysol.2004.03.096 CrossRefGoogle Scholar
  4. 4.
    Fan Z, Wang D, Chang P-C et al (2004) ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett 85:5923–5925. doi: 10.1063/1.1836870 CrossRefGoogle Scholar
  5. 5.
    Pimentel A, Gonçalves A, Marques A et al (2006) Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors. J Non Cryst Solids 352:1448–1452. doi: 10.1016/j.jnoncrysol.2006.02.022 CrossRefGoogle Scholar
  6. 6.
    Guo L, Zhang H, Zhao D et al (2012) High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens Actuators B 166–167:12–16. doi: 10.1016/j.snb.2011.08.049 CrossRefGoogle Scholar
  7. 7.
    Gonçalves G, Pimentel A, Fortunato E et al (2006) UV and ozone influence on the conductivity of ZnO thin films. J Non Cryst Solids 352:1444–1447. doi: 10.1016/j.jnoncrysol.2006.02.021 CrossRefGoogle Scholar
  8. 8.
    Liu YY, Wang XY, Cao Y et al (2013) A flexible blue light-emitting diode based on ZnO nanowire/polyaniline heterojunctions. J Nanomater 2013:4. doi: 10.1155/2013/870254 Google Scholar
  9. 9.
    Monteiro RCC, Lopes AAS, Lima MMA et al (2012) Sintering, crystallization, and dielectric behavior of barium zinc borosilicate glasses—effect of barium oxide substitution for zinc oxide. J Am Ceram Soc 95:3144–3150. doi: 10.1111/j.1551-2916.2012.05418.x CrossRefGoogle Scholar
  10. 10.
    Choi M-Y, Choi D, Jin M-J et al (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185–2189. doi: 10.1002/adma.200803605 CrossRefGoogle Scholar
  11. 11.
    Kumar B, Kim S-W (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342–355. doi: 10.1016/j.nanoen.2012.02.001 CrossRefGoogle Scholar
  12. 12.
    Chao C-H, Chan C-H, Huang J-J et al (2011) Manipulated the band gap of 1D ZnO nano-rods array with controlled solution concentration and its application for DSSCs. Curr Appl Phys 11:S136–S139. doi: 10.1016/j.cap.2010.11.056 CrossRefGoogle Scholar
  13. 13.
    Kao M-C, Chen H-Z, Young S-L et al (2012) Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells. Nanoscale Res Lett 7:1–6. doi: 10.1186/1556-276x-7-260 CrossRefGoogle Scholar
  14. 14.
    Zou X, Fan H, Tian Y, Yan S (2014) Synthesis of Cu 2 O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16:1149–1156. doi: 10.1039/C3CE42144A CrossRefGoogle Scholar
  15. 15.
    Xu X, Chen D, Yi Z et al (2013) Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29:5573–5580. doi: 10.1021/la400378t CrossRefGoogle Scholar
  16. 16.
    Sharma D, Rajput J, Kaith BS et al (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519:1224–1229. doi: 10.1016/j.tsf.2010.08.073 CrossRefGoogle Scholar
  17. 17.
    Pradhan D, Leung KT (2008) Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24:9707–9716. doi: 10.1021/la8008943 CrossRefGoogle Scholar
  18. 18.
    Yang J, Lin Y, Meng Y, Liu Y (2012) A two-step route to synthesize highly oriented ZnO nanotube arrays. Ceram Int 38:4555–4559. doi: 10.1016/j.ceramint.2012.02.033 CrossRefGoogle Scholar
  19. 19.
    Park J-A, Moon J, Lee S-J et al (2009) Fabrication and characterization of ZnO nanofibers by electrospinning. Curr Appl Phys 9:S210–S212. doi: 10.1016/j.cap.2009.01.044 CrossRefGoogle Scholar
  20. 20.
    Kripal R, Gupta AK, Srivastava RK, Mishra SK (2011) Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method. Spectrochim Acta Part A 79:1605–1612. doi: 10.1016/j.saa.2011.05.019 CrossRefGoogle Scholar
  21. 21.
    Raoufi D (2013) Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy 50:932–937. doi: 10.1016/j.renene.2012.08.076 CrossRefGoogle Scholar
  22. 22.
    Rodrigues J, Mata D, Fernandes AJS et al (2012) ZnO nanostructures grown on vertically aligned carbon nanotubes by laser-assisted flow deposition. Acta Mater 60:5143–5150. doi: 10.1016/j.actamat.2012.06.005 CrossRefGoogle Scholar
  23. 23.
    Lu C-H, Yeh C-H (2000) Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram Int 26:351–357. doi: 10.1016/S0272-8842(99)00063-2 CrossRefGoogle Scholar
  24. 24.
    Wirunmongkol T, O-Charoen N, Pavasupree S (2013) Simple hydrothermal preparation of zinc oxide powders using Thai Autoclave Unit. Energy Procedia 34:801–807. doi:http://dx.doi.org/10.1016/j.egypro.2013.06.816
  25. 25.
    Pimentel A, Nunes D, Duarte P et al (2014) Synthesis of long ZnO nanorods under microwave irradiation or conventional heating. J Phys Chem C 118:14629–14639. doi: 10.1021/jp5027509 CrossRefGoogle Scholar
  26. 26.
    Shaporev AS, Ivanov VK, Baranchikov AE, Tret’yakov YD (2007) Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater 43:35–39. doi: 10.1134/s0020168507010098 CrossRefGoogle Scholar
  27. 27.
    Barreto GP, Morales G et al. (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater doi: 10.1155/2013/478681
  28. 28.
    Shouli B, Liangyuan C, Dianqing L et al (2010) Different morphologies of ZnO nanorods and their sensing property. Sens Actuators B 146:129–137. doi: 10.1016/j.snb.2010.02.011 CrossRefGoogle Scholar
  29. 29.
    Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001. doi: 10.1088/1468-6996/10/1/013001 CrossRefGoogle Scholar
  30. 30.
    Yan H, He R, Pham J, Yang P (2003) Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv Mater 15:402–405. doi: 10.1002/adma.200390091 CrossRefGoogle Scholar
  31. 31.
    Li L, Pan S, Dou X et al (2007) Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J Phys Chem C 111:7288–7291. doi: 10.1021/jp0711242 CrossRefGoogle Scholar
  32. 32.
    Kunjara Na Ayudhya S, Tonto P, Mekasuwandumrong O et al (2006) Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst Growth Des 6:2446–2450. doi: 10.1021/cg050345z CrossRefGoogle Scholar
  33. 33.
    Kanade KG, Kale BB, Aiyer RC, Das BK (2006) Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater Res Bull 41:590–600. doi: 10.1016/j.materresbull.2005.09.002 CrossRefGoogle Scholar
  34. 34.
    Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, MatthewsGoogle Scholar
  35. 35.
    Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283. doi: 10.1016/S0040-4020(01)00906-1 CrossRefGoogle Scholar
  36. 36.
    Gabriel C, Gabriel S, Grant EH et al. (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213. doi: 10.1039/a827213z
  37. 37.
    Nemmaniwar BG, Kalyankar NV, Kadam PL (2013) Dielectric behaviour of binary mixture of 2-chloroaniline with 2-methoxyethanol and 2-ethoxyethanol. Orbital 5:1–6Google Scholar
  38. 38.
    Kappe CO (2013) How to measure reaction temperature in microwave-heated transformations. Chem Soc Rev 42:4977–4990. doi: 10.1039/c3cs00010a CrossRefGoogle Scholar
  39. 39.
    Wahab R, Ansari SG, Kim YS et al (2009) The role of pH variation on the growth of zinc oxide nanostructures. Appl Surf Sci 255:4891–4896. doi: 10.1016/j.apsusc.2008.12.037 CrossRefGoogle Scholar
  40. 40.
    Cullity BD (2011) Elements of X ray diffraction. Addison-Wesley Publishing company, IncGoogle Scholar
  41. 41.
    Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B 120:66–73. doi: 10.1016/j.jphotobiol.2013.01.004 CrossRefGoogle Scholar
  42. 42.
    Rezapour M, Talebian N (2011) Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: effect of synthesis methods and reaction media. Mater Chem Phys 129:249–255. doi: 10.1016/j.matchemphys.2011.04.012 CrossRefGoogle Scholar
  43. 43.
    Marques VS, Cavalcante LS, Sczancoski JC et al (2010) Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO 4 crystals and their optical properties. Cryst Growth Des 10:4752–4768. doi: 10.1021/cg100584b CrossRefGoogle Scholar
  44. 44.
    Li W-J, Shi E-W, Zhong W-Z, Yin Z-W (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196. doi: 10.1016/S0022-0248(99)00076-7 CrossRefGoogle Scholar
  45. 45.
    Hai-Yong G, Fa-Wang Y, Yang Z et al (2008) Synthesis and characterization of ZnO nanoflowers grown on AlN films by solution deposition. Chin Phys Lett 25:640–643. doi: 10.1088/0256-307X/25/2/077 CrossRefGoogle Scholar
  46. 46.
    Dem’yanets LN, Li LE, Uvarova TG (2006) Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci 41:1439–1444. doi: 10.1007/s10853-006-7457-z
  47. 47.
    Dhanaraj G, Byrappa K, Prasad V, Dudley M (2010) Springer handbook of crystal growth. Springer, Heidelberg, p 1856CrossRefGoogle Scholar
  48. 48.
    Wen B, Huang Y, Boland JJ (2008) Controllable growth of ZnO nanostructures by a simple solvothermal process. J Phys Chem C 112:106–111. doi: 10.1021/jp076789i CrossRefGoogle Scholar
  49. 49.
    Alenezi MR, Alshammari AS, Jayawardena KDGI et al (2013) Role of the exposed polar facets in the performance of thermally and UV Activated ZnO nanostructured gas sensors. J Phys Chem C 117:17850–17858. doi: 10.1021/jp4061895 CrossRefGoogle Scholar
  50. 50.
    Tong Y, Liu Y, Dong L et al (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110:20263–20267. doi: 10.1021/jp063312i CrossRefGoogle Scholar
  51. 51.
    Singh S, Chakrabarti P (2013) Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications. Superlattices Microstruct 64:283–293. doi: 10.1016/j.spmi.2013.09.031 CrossRefGoogle Scholar
  52. 52.
    Rajalakshmi M, Arora AK, Bendre BS, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445–2448. doi: 10.1063/1.372199 CrossRefGoogle Scholar
  53. 53.
    Li C, Lv Y, Guo L et al (2007) Raman and excitonic photoluminescence characterizations of ZnO star-shaped nanocrystals. J Lumin 122–123:415–417. doi: 10.1016/j.jlumin.2006.01.173 CrossRefGoogle Scholar
  54. 54.
    Chen SJ, Liu YC, Lu YM et al (2006) Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies. J Cryst Growth 289:55–58. doi: 10.1016/j.jcrysgro.2005.10.137 CrossRefGoogle Scholar
  55. 55.
    Pankove JI (1971) Optical processes in semiconductors. Dover Publications Inc, New JerseyGoogle Scholar
  56. 56.
    Wischmeier L, Voss T, Rückmann I et al (2006) Dynamics of surface-excitonic emission in ZnO nanowires. Phys Rev B 74:195333. doi: 10.1103/PhysRevB.74.195333 CrossRefGoogle Scholar
  57. 57.
    Li J, Fan H, Jia X et al (2009) Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route. Appl Phys A 98:537–542. doi: 10.1007/s00339-009-5489-3 CrossRefGoogle Scholar
  58. 58.
    Rodrigues J, Holz T, Allah RF et al (2015) Effect of the N2 and H2 plasma treatments on band edge emission of ZnO microrods. Sci Rep. doi: 10.1038/srep10783 Google Scholar
  59. 59.
    Bujdák J, Komadel P (1997) Interaction of methylene blue with reduced charge montmorillonite. J Phys Chem B 101:9065–9068. doi: 10.1021/jp9718515 CrossRefGoogle Scholar
  60. 60.
    Baruah S, Sinha SS, Ghosh B et al (2009) Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308. doi: 10.1063/1.3100221 CrossRefGoogle Scholar
  61. 61.
    Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. doi: 10.1016/j.jhazmat.2007.12.033 CrossRefGoogle Scholar
  62. 62.
    Dodd AC, McKinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanoparticle Res 8:43–51. doi: 10.1007/s11051-005-5131-z CrossRefGoogle Scholar
  63. 63.
    Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098. doi: 10.1007/s12274-011-0160-7 CrossRefGoogle Scholar
  64. 64.
    McLaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541. doi: 10.1021/ja9052703 CrossRefGoogle Scholar
  65. 65.
    Smallwood IM (1996) Ethylene glycol ethyl ether. In: Handbook of organic solvent properties. Wiley, pp 127–129Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.CENIMAT/I3N, Departamento de Ciência dos MateriaisFaculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL)LisbonPortugal
  2. 2.Departamento de Física e I3NUniversidade de AveiroAveiroPortugal

Personalised recommendations