Journal of Materials Science

, Volume 50, Issue 17, pp 5746–5757 | Cite as

Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction

  • Audric Michelot
  • Stéphanie Sarda
  • Catherine Audin
  • Eric Deydier
  • Eric Manoury
  • Rinaldo Poli
  • Christian Rey
Original Paper


Heterogenised homogeneous catalysis is commonly performed with molecular catalysts grafted on solids via adsorption or via a covalent molecular link. Covalent grafting of organic groups on solid supports is usually carried out by silylation, using functionalised trialkoxysilanes. Among these solids supports, very few studies have been published on apatites. In the present work, aminopropyltriethoxysilane (APTES) grafting was performed in toluene on different apatitic supports: crystallised stoichiometric hydroxyapatites differing by the drying method, freeze-dried (HAP) and dried at 100 °C (HAPD), and a nanocrystalline apatite. All materials were fully characterised, before and after grafting, for better understanding of the nature of the alkoxysilane/surface interaction. The data show a clear competition between the covalent grafting of APTES and its polycondensation reaction, depending on the nature of the solid support surface. Silylation is accompanied by APTES covalent grafting to oxygen atom of the hydroxyl groups of the apatitic structure and/or of the OH species that are present on the surface hydrated layer. This work clarifies the nature of silane grafting onto selected apatitic surfaces and especially the influence of the composition and properties of the apatitic surfaces on the process of silylation.


Apatite Vibration Band Apatitic Structure Covalent Grafting Apatitic Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fechete I, Wang Y, Védrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189(1):2–27CrossRefGoogle Scholar
  2. 2.
    Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G et al (2009) Nanocrystalline apatites: from powders to biomaterials. Powder Technol 190(1–2):118–122CrossRefGoogle Scholar
  3. 3.
    Sarda S, Fernandez E, Nilsson M, Balcells M, Planell JA (2002) Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res 61(4):653–659CrossRefGoogle Scholar
  4. 4.
    Grossin D, Rollin-Martinet S, Estournès C, Rossignol F, Champion E, Combes C et al (2010) Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects. Acta Biomater 6(2):577–585CrossRefGoogle Scholar
  5. 5.
    Yin G, Liu Z, Zhan J, Ding F, Yuan N (2002) Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chem Eng J 87(2):181–186CrossRefGoogle Scholar
  6. 6.
    Autefage H, Briand-Mésange F, Cazalbou S, Drouet C, Fourmy D, Gonçalvès S et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/β-tricalcium phosphate porous ceramics. J Biomed Mater Res B Appl Biomater 91B(2):706–715CrossRefGoogle Scholar
  7. 7.
    Al-Kattan A, Errassifi F, Sautereau AM, Sarda S, Dufour P, Barroug A et al (2010) Medical potentialities of biomimetic apatites through adsorption, ionic substitution, and mineral/organic associations: three illustrative examples. Adv Eng Mater 12(7):B224–B233CrossRefGoogle Scholar
  8. 8.
    Da Silva OG, Da Silva Filho EC, Da Fonseca MG, Arakaki LNH, Airoldi C (2006) Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J Colloid Interface Sci 302(2):485–491CrossRefGoogle Scholar
  9. 9.
    Kawasaki T (1991) Hydroxyapatite as a liquid chromatographic packing. J Chromatogr A 544:147–184CrossRefGoogle Scholar
  10. 10.
    Tahir R, Banert K, Solhy A, Sebti S (2006) Zinc bromide supported on hydroxyapatite as a new and efficient solid catalyst for Michael addition of indoles to electron-deficient olefins. J Mol Catal A: Chem 246(1–2):39–42CrossRefGoogle Scholar
  11. 11.
    Smahi A, Solhy A, El Badaoui H, Amoukal A, Tikad A, Maizi M et al (2003) Potassium fluoride doped fluorapatite and hydroxyapatite as new catalysts in organic synthesis. Appl Catal A 250(1):151–159CrossRefGoogle Scholar
  12. 12.
    Damia C, Sarda S, Deydier E, Sharrock P (2004) Study of two hydroxyapatite/poly(alkoxysilane) implant coatings. Surf Coat Technol 201(6):3008–3015CrossRefGoogle Scholar
  13. 13.
    Durrieu MC, Pallu S, Guillemot F, Bareille R, Amédée J, Baquey C et al (2004) Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci 15(7):779–786. doi: 10.1023/B:JMSM.0000032818.09569.d9 Google Scholar
  14. 14.
    Kim J, Seidler P, Wan LS, Fill C (2009) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci 329(1):114–119CrossRefGoogle Scholar
  15. 15.
    Simon A, Cohen-Bouhacina T, Porté MC, Aimé JP, Baquey C (2002) Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. J Colloid Interface Sci 251(2):278–283CrossRefGoogle Scholar
  16. 16.
    Goonasekera CS, Jack KS, Cooper-White JJ, Grondahl L (2013) Attachment of poly(acrylic acid) to 3-aminopropyltriethoxysilane surface-modified hydroxyapatite. J Mater Chem B 1(42):5842–5852CrossRefGoogle Scholar
  17. 17.
    Vasiliev AN, Zlotnikov E, Khinast JG, Riman RE (2008) Chemisorption of silane compounds on hydroxyapatites of various morphologies. Scr Mater 58(12):1039–1042CrossRefGoogle Scholar
  18. 18.
    Eichert D, Drouet C, Sfihi H, Rey C, Combes C (2007) Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB (ed) Biomaterials research advances. Nova Science Publishers, New York, pp 93–143Google Scholar
  19. 19.
    Liu Q, De Wijn JR, De Groot K, Van Blitterswijk CA (1998) Surface modification of nano-apatite by grafting organic polymer. Biomaterials 19(11–12):1067–1072CrossRefGoogle Scholar
  20. 20.
    Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P (2006) Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27(4):631–642CrossRefGoogle Scholar
  21. 21.
    Trombe JC (1972) Contribution à l’étude de la décomposition et la réactivité de certaines apatites hydroxylées carbonatées ou fluorées alcalino-terreuses. PhD Thesis, UPS, Toulouse, FranceGoogle Scholar
  22. 22.
    Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mater 5(4):345–356Google Scholar
  23. 23.
    Sakeye M, Smått J-H (2012) Comparison of different amino-functionalization procedures on a selection of metal oxide microparticles: degree of modification and hydrolytic stability. Langmuir 28(49):16941–16950CrossRefGoogle Scholar
  24. 24.
    Charlot G (1974) Chimie analytique quantitative. Masson et Cie, ParisGoogle Scholar
  25. 25.
    Guinier A (1960) Théorie et technique de la radiocristallographie, 3rd edn. Dunod, ParisGoogle Scholar
  26. 26.
    Ashok M, Meenakshi Sundaram N, Narayana Kalkura S (2003) Crystallization of hydroxyapatite at physiological temperature. Mater Lett 57(13–14):2066–2070CrossRefGoogle Scholar
  27. 27.
    Heughebaert JC (1977) Contribution à l’étude de l’évolution des othophosphates de calcium précipités amorphes en orthophosphates apatitiques. PhD Thesis, INP ToulouseGoogle Scholar
  28. 28.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Rey C, Combes C, Drouet C, Lebugle A, Sfihi H, Barroug A (2007) Nanocrystalline apatites in biological systems: characterisation, structure and properties. Materialwiss Werkstofftech 38(12):996–1002CrossRefGoogle Scholar
  30. 30.
    Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481CrossRefGoogle Scholar
  31. 31.
    Yesinovski JP, Eckert H (1987) Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. J Am Chem Soc 109:6274–6282CrossRefGoogle Scholar
  32. 32.
    Jäger C, Welzel T, Meyer Zaika W, Epple M (2006) A solid state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44(6):573–580CrossRefGoogle Scholar
  33. 33.
    Gomis V, Font A, Saquete MD (2008) Homogeneity of the water + ethanol + toluene azeotrope at 101.3 kPa. Fluid Phase Equilib 266(1–2):8–13CrossRefGoogle Scholar
  34. 34.
    Blumenthal N, Posner A (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Res 13(1):235–243CrossRefGoogle Scholar
  35. 35.
    Domingo C, Loste E, Fraile J (2006) Grafting of trialkoxysilane on the surface of nanoparticles by conventional wet alcoholic and supercritical carbon dioxide deposition methods. J Supercrit Fluids 37(1):72–86CrossRefGoogle Scholar
  36. 36.
    Bistričić L, Volovšek V, Dananić V (2007) Conformational and vibrational analysis of gamma-aminopropyltriethoxysilane. J Mol Struct 834–836:355–363CrossRefGoogle Scholar
  37. 37.
    Ishida H, Chiang C, Koenig JL (1982) The structure of aminofunctional silane coupling agents: 1. γ-Aminopropyltriethoxysilane and its analogues. Polymer 23(2):251–257CrossRefGoogle Scholar
  38. 38.
    Shih PTK, Koenig JL (1975) Raman studies of the hydrolysis of silane coupling agents. Mater Sci Eng 20:137–143CrossRefGoogle Scholar
  39. 39.
    Sharma RK, Pandey A, Gulati S (2012) Silica-supported molybdenum complex: a novel, selective and reusable organic–inorganic hybrid catalyst for eco-friendly oxidation of sulfides and olefins. Polyhedron 45(1):86–93CrossRefGoogle Scholar
  40. 40.
    Cardiano P, Sergi S, Lazzari M, Piraino P (2002) Epoxy–silica polymers as restoration materials. Polymer 43(25):6635–6640CrossRefGoogle Scholar
  41. 41.
    Brown WE, Mathew M, Chow LC (1984) Roles of octacalcium phosphate in surface chemistry of apatites. In: Misra D (ed) Adsorption on and surface chemistry of hydroxyapatite. Springer, New York, pp 13–28CrossRefGoogle Scholar
  42. 42.
    Wang X, Song G, Lou T (2010) Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med Eng Phys 32(4):391–397CrossRefGoogle Scholar
  43. 43.
    Zhang SM, Liu J, Zhou W, Cheng L, Guo XD (2005) Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr Appl Phys 5(5):516–518CrossRefGoogle Scholar
  44. 44.
    Zhang H-p LuX, Leng Y, Fang L, Qu S, Feng B et al (2009) Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomater 5(4):1169–1181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Audric Michelot
    • 1
    • 2
  • Stéphanie Sarda
    • 1
  • Catherine Audin
    • 2
    • 3
  • Eric Deydier
    • 2
    • 3
  • Eric Manoury
    • 2
    • 3
  • Rinaldo Poli
    • 2
    • 3
    • 4
  • Christian Rey
    • 5
  1. 1.CIRIMAT, INPT-CNRS-UPS, Université de Toulouse, Université Paul SabatierToulouse Cedex 04France
  2. 2.CNRS, LCCToulouse Cedex 04France
  3. 3.Université de Toulouse, Université Paul Sabatier, INPTToulouse Cedex 04France
  4. 4.Institut Universitaire de FranceParisFrance
  5. 5.CIRIMAT, INPT-CNRS-UPS, Université de Toulouse, ENSIACETToulouse Cedex 04France

Personalised recommendations