Advertisement

Journal of Materials Science

, Volume 50, Issue 16, pp 5620–5629 | Cite as

Probing the catalytic activity of bimetallic versus trimetallic nanoshells

  • Thenner S. Rodrigues
  • Anderson G. M. da Silva
  • Alexandra Macedo
  • Bruna W. Farini
  • Rafael da S. Alves
  • Pedro H. C. CamargoEmail author
Original Paper

Abstract

The synthesis of trimetallic nanoparticles represents an emerging strategy to maximize catalytic performances in noble metal-based catalysts. However, the controllable synthesis of trimetallic nanomaterials as well as the exact role played by the addition of a third metal in their composition over catalytic performances remains unclear. In this paper, we describe the synthesis of trimetallic nanoshells having AgAuPd, AgAuPt, and AgPdPt compositions by a sequential galvanic replacement reaction approach between Ag nanospheres as sacrificial templates and the corresponding metal precursors, i.e., AuCl4 (aq), PdCl4 2− (aq), and/or PtCl6 2− (aq). In each of these systems, the composition could be systematically tuned by varying the molar ratios between Ag and each metal precursor. Nanoshells having Ag56Au28Pd16, Ag78Au9Pt13, and Ag71Pd16Pt13 compositions were employed as model systems to investigate the effect of the addition of the third metal in their composition over the catalytic activities toward the 4-nitrophenol reduction. Our data demonstrate a significant enhancement in conversion percentages and thus the catalytic activities relative to the sum of their bimetallic counterparts, and this increase was dependent on the nature of the metals, corresponding to 826, 135, and 56 % for Ag56Au28Pd16, Ag78Au9Pt13, and Ag71Pd16Pt13 nanoshells relative to their bimetallic analogs. The results presented herein demonstrate the strong correlation between catalytic activity and composition in multimetallic nanoshells, and that the incorporation of a third metal may represent a promising approach to boost catalytic activities for a variety of transformations.

Keywords

Localize Surface Plasmon Resonance Inductively Couple Plasma Optical Emission Spectrometry Metal Precursor Hollow Interior Galvanic Replacement Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Numbers 2013/19861-6) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Number 471245/2012-7). Pedro H. C. Camargo thanks the CNPq for research fellowships. Thenner S. Rodrigues thanks the CAPES, Anderson G. M. da Silva, Alexandra Macedo, and Rafael da S. Alves thank CNPq, and Bruna W. Farini thanks FAPESP, for the fellowships.

References

  1. 1.
    Slater TJA, Macedo A, Schroeder SLM et al (2014) Correlating catalytic activity of Ag–Au nanoparticles with 3D compositional variations. Nano Lett 14:1921–1926CrossRefGoogle Scholar
  2. 2.
    Yu X, Wang D, Peng Q, Li Y (2011) High performance electrocatalyst: Pt–Cu hollow nanocrystals. Chem Commun 47:8094–8096CrossRefGoogle Scholar
  3. 3.
    Hong JW, Kang SW, Choi B-S et al (2012) Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6:2410–2419CrossRefGoogle Scholar
  4. 4.
    Lou (David) XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  5. 5.
    Zheng J-N, Lv J-J, Li S-S et al (2014) One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation. J Mater Chem A 2:3445–3451CrossRefGoogle Scholar
  6. 6.
    Mahmoud MA, Garlyyev B, El-Sayed MA (2014) Controlling the catalytic efficiency on the surface of hollow gold nanoparticles by introducing an inner thin layer of platinum or palladium. J Phys Chem Lett 5:4088–4094CrossRefGoogle Scholar
  7. 7.
    Xue J, Xiang H, Wang K et al (2012) The preparation of carbon-encapsulated Fe/Co nanoparticles and their novel applications as bifunctional catalysts to promote the redox reaction for p-nitrophenol. J Mater Sci 47:1737–1744. doi: 10.1007/s10853-011-5953-2 CrossRefGoogle Scholar
  8. 8.
    Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676CrossRefGoogle Scholar
  9. 9.
    Sun Y, Mayers B, Xia Y (2003) Metal nanostructures with hollow interiors. Adv Mater 15:641–646CrossRefGoogle Scholar
  10. 10.
    Xia X, Wang Y, Ruditskiy A, Xia Y (2013) 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater 25:6313–6333CrossRefGoogle Scholar
  11. 11.
    Jiang H-L, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725CrossRefGoogle Scholar
  12. 12.
    An K, Hyeon T (2009) Synthesis and biomedical applications of hollow nanostructures. Nano Today 4:359–373CrossRefGoogle Scholar
  13. 13.
    da Silva AGM, de Souza ML, Rodrigues TS et al (2014) Rapid synthesis of hollow Ag–Au nanodendrites in 15 seconds by combining galvanic replacement and precursor reduction reactions. Chemistry 20:15040–15046CrossRefGoogle Scholar
  14. 14.
    Mahmoud MA, Narayanan R, El-Sayed MA (2013) Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. Acc Chem Res 46:1795–1805CrossRefGoogle Scholar
  15. 15.
    Chen HM, Liu R-S, Lo M-Y et al (2008) Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J Phys Chem C 112:7522–7526CrossRefGoogle Scholar
  16. 16.
    Wang W, Pang Y, Yan J et al (2012) Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bull 45:91–98CrossRefGoogle Scholar
  17. 17.
    Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112:5780–5817CrossRefGoogle Scholar
  18. 18.
    Chai J, Li F, Hu Y et al (2011) Hollow flower-like AuPd alloy nanoparticles: one step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid. J Mater Chem 21:17922–17929CrossRefGoogle Scholar
  19. 19.
    Wu H, Wang P, He H, Jin Y (2012) Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res 5:135–144CrossRefGoogle Scholar
  20. 20.
    Khanal S, Bhattarai N, McMaster D et al (2014) Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces. Phys Chem Chem Phys 16:16278–16283CrossRefGoogle Scholar
  21. 21.
    Ostrom CK, Chen A (2013) Synthesis and electrochemical study of Pd-based trimetallic nanoparticles for enhanced hydrogen storage. J Phys Chem C 117:20456–20464CrossRefGoogle Scholar
  22. 22.
    Qiao P, Xu S, Zhang D et al (2014) Sub-10 nm Au–Pt–Pd alloy trimetallic nanoparticles with a high oxidation-resistant property as efficient and durable VOC oxidation catalysts. Chem Commun 50:11713–11716CrossRefGoogle Scholar
  23. 23.
    Zhang H, Toshima N (2013) Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catal Sci Technol 3:268–278. doi: 10.1039/C2CY20345F CrossRefGoogle Scholar
  24. 24.
    Ghiaci M, Aghabarari B, Botelho do Rego AM et al (2011) Efficient allylic oxidation of cyclohexene catalyzed by trimetallic hybrid nano-mixed oxide (Ru/Co/Ce). Appl Catal A 393:225–230CrossRefGoogle Scholar
  25. 25.
    Jiang K, Cai W-B (2014) Carbon supported Pd–Pt–Cu nanocatalysts for formic acid electrooxidation: synthetic screening and componential functions. Appl Catal B 147:185–192CrossRefGoogle Scholar
  26. 26.
    Venkatesan P, Santhanalakshmi J (2010) Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for sonogashira coupling reactions. Langmuir 26:12225–12229CrossRefGoogle Scholar
  27. 27.
    Wu H, Pantaleo G, La Parola V et al (2014) Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Appl Catal B 156–157:350–361CrossRefGoogle Scholar
  28. 28.
    Wu Y, Wang D, Zhou G et al (2014) Sophisticated construction of Au islands on Pt–Ni: an ideal trimetallic nanoframe catalyst. J Am Chem Soc 136:11594–11597CrossRefGoogle Scholar
  29. 29.
    Wang H-L, Yan J-M, Wang Z-L, Jiang Q (2012) One-step synthesis of Cu@FeNi core–shell nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 37:10229–10235CrossRefGoogle Scholar
  30. 30.
    Kang SW, Lee YW, Park Y et al (2013) One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance. ACS Nano 7:7945–7955CrossRefGoogle Scholar
  31. 31.
    Hungria AB, Raja R, Adams RD et al (2006) Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew Chemie Int Ed 45:4782–4785CrossRefGoogle Scholar
  32. 32.
    Petri MV, Ando RA, Camargo PHC (2012) Tailoring the structure, composition, optical properties and catalytic activity of Ag–Au nanoparticles by the galvanic replacement reaction. Chem Phys Lett 531:188–192CrossRefGoogle Scholar
  33. 33.
    Endo T, Kuno T, Yoshimura T, Esumi K (2005) Preparation and catalytic activity of Au–Pd, Au–Pt, and Pt–Pd binary metal dendrimer nanocomposites. J Nanosci Nanotechnol 5:1875–1882CrossRefGoogle Scholar
  34. 34.
    Silvert P-Y, Herrera-Urbina R, Duvauchelle N et al (1996) Preparation of colloidal silver dispersions by the polyol process. Part 1-Synthesis and characterization. J Mater Chem 6:573–577CrossRefGoogle Scholar
  35. 35.
    Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179CrossRefGoogle Scholar
  36. 36.
    Zhang C, Li C, Chen Y, Zhang Y (2014) Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers. J Mater Sci 49:6872–6882. doi: 10.1007/s10853-014-8389-7 CrossRefGoogle Scholar
  37. 37.
    da Silva AGM, Rodrigues TS, Macedo A et al (2014) An undergraduate level experiment on the synthesis of Au nanoparticles and their size-dependent optical and catalytic properties. Química Nov 37:1716–1720Google Scholar
  38. 38.
    Wang X, Fu J, Wang M et al (2014) Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. Mater Sci 49:5056–5065. doi: 10.1007/s10853-014-8212-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thenner S. Rodrigues
    • 1
  • Anderson G. M. da Silva
    • 1
  • Alexandra Macedo
    • 1
  • Bruna W. Farini
    • 1
  • Rafael da S. Alves
    • 1
  • Pedro H. C. Camargo
    • 1
    Email author
  1. 1.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations