Journal of Materials Science

, Volume 50, Issue 14, pp 4980–4993 | Cite as

Evidence for magneto-electric and spin–lattice coupling in PbFe0.5Nb0.5O3 through structural and magneto-electric studies

  • Shidaling Matteppanavar
  • Sudhindra Rayaprol
  • Kiran Singh
  • V. Raghavendra Reddy
  • Basavaraj Angadi
Original Paper

Abstract

Neutron diffraction (ND) studies were carried out on polycrystalline single-phase multiferroic Pb(Fe0.5Nb0.5)O3 (PFN) in the temperature range of 290–2 K to understand the structural and magnetic properties as a function of temperature. ND data were refined using the Rietveld refinement method for both crystallographic and magnetic structures. The structure at room temperature was found to be monoclinic, in Cm space group. No structural transition was observed till 2 K. At low temperatures (i.e., from T < T N; T N = 155 K), an additional peak appears at scattering vector, Q = 1.35 Å−1, indicating the onset of antiferromagnetic ordering. The magnetic structure was found to be commensurate with the crystallographic structure and could be refined using the propagation vector, k = [0.125, 0.5, and 0.5]. Magnetization, ferroelectric PE loops, and dielectric measurements on PFN reveal a strong anomaly at the antiferromagnetic transition temperature (T N) indicating the magneto-electric coupling. The refined temperature-dependent structural parameters such as unit cell volume and monoclinic distortion angle (β) reveal pronounced anomalies at the magnetic ordering temperature (T N), which indicates strong spin–lattice coupling. An anomaly in lattice volume was observed with a small negative thermal expansion below and a large thermal expansion above the T N, respectively. It shows the occurrence of isostructural phase transition accompanying the magnetic ordering below T N ~155 K, leading to significant change in ionic polarization, octahedral tilt angle, and lattice strain around T N. We have used refined atomic positional coordinates from the nuclear and magnetic structures, to obtain ionic polarization. These detailed studies confirm the magneto-electric and spin–lattice coupling in PFN across T N.

Keywords

Neutron Diffraction Rietveld Refinement Ferroelectric Phase Transition Ionic Polarization Pyrochlore Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors (SM and BA) would like to acknowledge UGC-DAE-CSR, Mumbai for financial support through the project CRS-M-159. Authors thank Prof. E. V. Sampathkumaran, TIFR, Mumbai, India for the dielectric measurements, also they are thankful to UGC-DAE CSR Indore for providing ferroelectric measurement facility.

References

  1. 1.
    Cheong S-W, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:1–20CrossRefGoogle Scholar
  2. 2.
    Singh SP, Pandey D, Yoon S, Baik S, Shin N (2007) Evidence for monoclinic crystal structure and negative thermal expansion below magnetic transition temperature in Pb(Fe1/2Nb1/2)O3. Appl Phys Lett 90:242915-1–24915-3Google Scholar
  3. 3.
    Brunskill IH, Schmidt H, Tissot P (1981) The characterrization of high temperature solution-grown crystals of Pb(Fe1/2 Nb1/2)O3. Ferroelectrics 37:547–550CrossRefGoogle Scholar
  4. 4.
    Bokov AA, Emelyanov SM (1991) Electrical properties of Pb(Fe0.5Nb0.5)O3 crystals. Phys Status Solidi B 164:K109–K112CrossRefGoogle Scholar
  5. 5.
    Bonny V, Bonin M, Sciau P, Schenk KJ, Chapuis G (1997) Phase transitions in disordered lead iron niobate: X-ray and synchrotron radiation diffraction experiments. Solid State Commun 102:347–352CrossRefGoogle Scholar
  6. 6.
    Yasuda N, Ueda Y (1989) Dielectric properties of PbFe1/2Nb1/2O3under pressure. Ferroelectrics 95:147–151CrossRefGoogle Scholar
  7. 7.
    Yokosuka M (1993) Electrical and electromechanical properties of hot-pressed Pb(Fe1/2Nb1/2)O3 ferroelectric ceramics. Jpn J Appl Phys 32:1142–1146CrossRefGoogle Scholar
  8. 8.
    Fu SL, Chen CF (1989) Fabrication of perovskite Pb(Fe1/2Nb1/2)O3and reaction mechanism. Ferroelectrics 82:119–126CrossRefGoogle Scholar
  9. 9.
    Smolenskii GA, Agranovskaia AI, Popov SN, Isupov VA (1958) Sov Phys Tech Phys 3:1981Google Scholar
  10. 10.
    Singh SP, Singh AK, Pandey D (2007) Evidence for a monoclinic M A to tetragonal morphotropic phase transition in (1-x) Pb(Fe1/2Nb1/2)O3x PbTiO3 ceramics. J Phys 19:036217-1–036217-9Google Scholar
  11. 11.
    Peng W, Lemee N, Karkut M, Dkhil B, Shvartsman VV, Borisov P, Kleemann W, Holc J, Kosec M, Blinc R (2009) Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films. Appl Phys Lett 94:012509-1–012509-3Google Scholar
  12. 12.
    Lampis N, Sciau P, Lehmann AG (1999) Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Nb0.5O3. J Phys 11:3489–3500Google Scholar
  13. 13.
    Mabud SA (1984) X-ray and neutron diffraction studies of lead iron niobate ceramics and single crystals. Phase Trans 4:183–200CrossRefGoogle Scholar
  14. 14.
    Ivanov SA, Tellgren R, Rundlof H, Thomas NW, Ananta S (2000) Investigation of the structure of the relaxor ferroelectric Pb(Fe1/2Nb1/2)O3 by neutron powder diffraction. J Phys 12:2393–2400Google Scholar
  15. 15.
    Bhat VV, Angadi B, Umarji AM (2005) Synthesis, low temperature sintering and property enhancement of PMN–PT ceramics based on the dilatometric studies. Mater Sci Eng B 116:131–139CrossRefGoogle Scholar
  16. 16.
    Matteppanavar S, Angadi B, Rayaprol S (2013) Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe0.5Nb0.5O3. AIP Conf Proc 1512:1232–1233CrossRefGoogle Scholar
  17. 17.
    Baldinozzi G, Sciau Ph, Lapasset J (1992) Crystal Structure of Pb2 CoWO6 in the Cubic Phase. Phys Status Solidi A 133:17–23CrossRefGoogle Scholar
  18. 18.
    Singh AK, Pandey D, Zaharko O (2006) Powder neutron diffraction study of phase transitions in and a phase diagram of (1 − x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. Phys Rev B 74:024101-1–024101-18Google Scholar
  19. 19.
    Lampis N, Sciau P, Lehmann AG (2000) Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3. J Phys 12:2367–2378Google Scholar
  20. 20.
    Ivanov SA, Eriksson SG, Thomas NW, Tellgren R, Rundlof H (2001) A neutron powder diffraction study of the ferroelectric relaxor Pb(Fe1/2Ta1/2)O3. J Phys 13:25–34Google Scholar
  21. 21.
    Ivanov SA, Eriksson SG, Tellgren R, Rundlof H (2004) Neutron powder diffraction study of the magnetoelectric relaxor Pb(Fe2/3W1/3)O3. Mater Res Bull 39:2317–2328CrossRefGoogle Scholar
  22. 22.
    Watanabe T, Kohn K (1989) Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystal. Phase Transit 15:57–68CrossRefGoogle Scholar
  23. 23.
    Havlicek R, Poltierova J, Vejpravova Bochenek D (2010) Structure and magnetic properties of perovskite-like multiferroic PbFe0.5Nb0.5O3. J Phys 200:0120581–0120583Google Scholar
  24. 24.
    Vincent E, Dupuis V, Alba M, Hammann J, Bouchaud J-P (2000) Aging phenomena in spin-glass and ferromagnetic phases: domain growth and wall dynamics. Europhys Lett 50:674–680CrossRefGoogle Scholar
  25. 25.
    Chang H, Guo Y-Q, Liang J-K, Rao G-H (2004) Magnetic ordering and irreversible magnetization between ZFC and FC states in RCo5Ga7 compounds. J Magn Magn Matter 278:306–310CrossRefGoogle Scholar
  26. 26.
    Ashok Kumar, Katiyar RS, Carlos Rinaldi, Lushnikov Sergey G, Shaplygina Tatjana A (2008) Glasslike state in Pb(Fe1/2Nb1/2)O3 single crystal. Appl Phys Lett 93:232902CrossRefGoogle Scholar
  27. 27.
    Kleemann W, Shvartsman VV, Borisov P (2010) Coexistence of Antiferromagnetic and Spin Cluster Glass Order in the Magnetoelectric Relaxor Multiferroic Pb(Fe1/2Nb1/2)O3. Phys Rev Lett 105:257202CrossRefGoogle Scholar
  28. 28.
    Laguta VV, Rosa J, Jastrabik L, Blinc R, Cevc P, Zalar B, Remskar M, Raevskaya SI, Raevski IP (2010) 93Nb NMR and Fe3+ EPR study of local magnetic properties of magnetoelectric Pb(Fe1/2Nb1/2)O3. Mater Res Bull 45:1720CrossRefGoogle Scholar
  29. 29.
    Rotaru GM, Roessli B, Amato A, Gvasaliya SN, Mudry C, Lushnikov SG, Shaplygina TA (2009) Spin-glass state and long-range magnetic order in Pb(Fe1/2Nb1/2)O3 seen via neutron scattering and muon spin rotation. Phys Rev B 79:184430CrossRefGoogle Scholar
  30. 30.
    Neel L, Acad. Sci. Paris C.R. 253, 9 (1961)Google Scholar
  31. 31.
    Larrégola SA, Pedregosa JC, Algueró M, Jimenez R, Garcia-Hernandez M, Fernandez-Diaz MT, Alonso JA (2012) A novel near-room-temperature type I multiferroic: Pb(Fe0.5Ti0.25W0.25)O3 with coexistence of ferroelectricity and weak ferromagnetism. Chem Mater 24(14):2664–2672CrossRefGoogle Scholar
  32. 32.
    Chillal S, Thede M, Litterst FJ, Gvasaliya SN, Shaplygina TA, Lushnikov SG, Zheludev A (2013) Microscopic coexistence of antiferromagnetic and spin-glass states. Phys Rev B 87:220403(R)CrossRefGoogle Scholar
  33. 33.
    Laguta VV, Glinchuk MD, Mary sko M, Kuzian RO, Prosandeev SA, Raevskaya SI, Smotrakov VG, Eremkin VV, Raevski IP (2013) Effect of Ba and Ti doping on magnetic properties of multiferroic Pb(Fe1/2Nb1/2)O3. Phys Rev B 87:064403CrossRefGoogle Scholar
  34. 34.
    Font R, Alvarez G, Raymond O, Portelles J, Siqueiros JM (2008) Evidence of magnetodielectric coupling in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics from ferroelectric measurements and electron paramagnetic resonance. Appl Phys Lett 93:172902-1–172902-3CrossRefGoogle Scholar
  35. 35.
    Gao XS, Chen XY, Yin J, Wu J, Liu ZG, Wang M (2000) Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O3 ceramics and thin films. J Mater Sci 35:5421–5425. doi: 10.1023/A:1004815416774 CrossRefGoogle Scholar
  36. 36.
    Yang Y, Liu J-M, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)0O3 single crystals. Phys Rev B 70:132101-1–132101-4Google Scholar
  37. 37.
    Correa M, Kumar A, Katiyar RS, Rinaldi C (2008) Observation of magnetoelectric coupling in glassy epitaxial PbFe0.5Nb0.5O3 thin films. Appl Phys Lett 93:192907-1–192907-3CrossRefGoogle Scholar
  38. 38.
    Lente MH, Guerra JDS, de Souza GKS, Frygola BM, Raigoza CFV, Garcia D, Eiras JA (2008) Nature of magnetoelectric coupling in multiferroic Pb(Fe1/2Nb1/2)O3 ceramics. Phys Rev B 78:054109-1–054109-6CrossRefGoogle Scholar
  39. 39.
    Correa M, Kumar A, Priya S, Katiyar RS, Scott JF (2011) Phonon anomalies and phono-spin coupling in oriented Pb(Fe0.5Nb0.5)O3 thin films. Phys Rev B 83:014302-1–014302-10CrossRefGoogle Scholar
  40. 40.
    Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205-1–057205-4CrossRefGoogle Scholar
  41. 41.
    Nugroho AA, Bellido N, Adem U, Nénert G, Simon C, Tjia MO, Mostovoy M, Palstra TTM (2007) Enhancing the magnetoelectric coupling in YMnO3 by Ga doping. Phys Rev B 75:174435-1–174435-5CrossRefGoogle Scholar
  42. 42.
    Lorenz B, Litvinchuk AP, Gospodinov MM, Chu CW (2004) Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3. Phys Rev Lett 92:087204-1–087204-4CrossRefGoogle Scholar
  43. 43.
    Singh A, Pandey V, Kotnal RK, Pandey D (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101:247602-1–247602-4Google Scholar
  44. 44.
    Raevski IP, Prosandeev SA, Bogatin AS, Malitskaya MA, Jastrabik L (2003) High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb). J Appl Phys 93:4130CrossRefGoogle Scholar
  45. 45.
    Raevski IP, Kuropatkina SA, Kubrin SP, Raevskaya SI, Titov VV, Sarychev DA, Malitskaya MA, Bogatin AS, Zakharchenko IN (2009) Dielectric and mössbauer studies of high-permittivity BaFe1/2Nb1/2O3 ceramics with cubic and monoclinic perovskite structures. Ferroelectrics 379(1):48–54CrossRefGoogle Scholar
  46. 46.
    Glazer AM (1972) The classification of tilted octahedral in perovskites. Acta Crystallogr B 28:3384–3392CrossRefGoogle Scholar
  47. 47.
    Patel JP, Senyshyn A, Fuess H, Pandey D (2013) Evidence for weak ferromagnetism, isostructural phase transition, and linear magnetoelectric coupling in the multiferroic Bi0.8Pb0.2Fe0.9Nb0.1O3 solid solution. Phys Rev B 88:104108-1–104108-9CrossRefGoogle Scholar
  48. 48.
    Lee S, Pirogov A, Han JH, Park J-G, Hoshikawa A, Kamiyama T (2005) Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Phys Rev B 71:180413-1–180413-4Google Scholar
  49. 49.
    Raevski IP, Kubrin SP, Raevskaya SI, Sarychev DA, Prosandeev SA, Malitskaya MA (2012) Magnetic properties of PbFe1/2Nb1/2O3: mossbauer spectroscopy and first-principles calculations. Phys Rev B 85:224412CrossRefGoogle Scholar
  50. 50.
    Sitalo EI, Raevski IP, Lutokhin AG, Blazhevich AV, Kubrin SP, Raevskaya SI, Zakharov YN, Malitskaya MA, Titov VV, Zakharchenko IN (2011) Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3-PbTiO3 ceramics from the morphotropic phase boundary compositional range. IEEE Trans Ultrason Ferroelectr Freq Control 58(9):1914–1919CrossRefGoogle Scholar
  51. 51.
    Megaw HD, Darlington CNW (1975) Geometrical and structural relations in the rhombohedral perovskites. Acta Cryst A31:161–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBangaloreIndia
  2. 2.UGC-DAE-Consortium for Scientific Research, Mumbai CentreMumbaiIndia
  3. 3.UGC-DAE Consortium for Scientific ResearchIndoreIndia

Personalised recommendations