Journal of Materials Science

, Volume 50, Issue 14, pp 4845–4859 | Cite as

Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica

  • Martin Heinz Kothmann
  • Mazen Ziadeh
  • Gökhan Bakis
  • Agustin Rios de Anda
  • Josef Breu
  • Volker AltstädtEmail author
Original Paper


The mechanical properties of epoxy/clay nanocomposites were investigated in relation to the particle size and shear stiffness state of the dispersed nanoplatelets. The fracture toughness and the underlying toughening mechanisms were thoroughly discussed in detail. For this study, a highly pure synthetic fluorohectorite with large lateral extensions (≈3.8 µm) was used and compared to natural montmorillonite characterized by significantly smaller lateral extensions (≈400 nm). Moreover, for the synthetic fluorohectorite, the subtle balance between layer charge density and the hydration enthalpy of interlayer cations allows for switching between a shear-labile and shear-stiff state, something impossible for the natural material. To ensure optimum dispersion, solution blending was followed by three roll milling for nanocomposite preparation. The addition of all three types of clay used in this study provoked a decrease in glass transition temperature, which indicated a moderate interfacial strength. The maximum increase in fracture toughness and strain energy release rate was observed for the nanocomposites prepared with the large and shear-stiff fluorohectorites at a particle content as low as 2.2 vol%. Morphological investigations by scanning electron microscopy of the fracture surfaces revealed the contribution of several micro-mechanical toughening mechanisms. In contrast to the small natural montmorillonite, the large synthetic nanoplatelets promoted additional energy dissipating mechanisms such as crack deflection and crack pinning leading to an enhanced fracture toughness. These observations are discussed in details using fracture mechanical approaches.


Fracture Toughness Energy Release Rate Neat Epoxy Crack Deflection Static Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors highly acknowledge the financial support from the German Research Foundation in the frame of the Collaborative Research Center SFB 840: “From particulate nanosystems to mesotechnology,” and from the German Federal Ministry for Economic Affairs and Energy (FKZ 0327895E).


  1. 1.
    Levita G, De Petris S, Marchetti A, Lazzeri A (1991) Crosslink density and fracture toughness of epoxy resins. J Mater Sci 26:2348–2352. doi: 10.1007/BF01130180 CrossRefGoogle Scholar
  2. 2.
    Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54:4790–4797CrossRefGoogle Scholar
  3. 3.
    Sprenger S, Kothmann MH, Altstädt V (2014) Carbon fiber-reinforced composites by modifying the epoxy resin with reactive liquid rubber and silica nanoparticles. Compos Sci Technol 105:86–95CrossRefGoogle Scholar
  4. 4.
    Kothmann MH, Zeiler R, Rios de Anda A, Brückner A, Altstädt V (2015) Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles. Polymer 60:157–163CrossRefGoogle Scholar
  5. 5.
    Zilg C, Mülhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661–670CrossRefGoogle Scholar
  6. 6.
    Becker O, Varley RJ, Simon GP (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43:4365–4373CrossRefGoogle Scholar
  7. 7.
    Kinloch AJ, Taylor AC (2006) The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J Mater Sci 41:3271–3297. doi: 10.1007/s10853-005-5472-0 CrossRefGoogle Scholar
  8. 8.
    Dzenis Y (2008) Structural nanocomposites. Science 319:419–420CrossRefGoogle Scholar
  9. 9.
    Fischer S, Salcher A, Kornowski A, Weller H, Förster S (2011) Completely miscible nanocomposites. Angew Chem Int Ed 50:7811–7814CrossRefGoogle Scholar
  10. 10.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  11. 11.
    Mittal V (2012) Modification of montmorillonites with thermally stable phosphonium cations and comparison with alkylammonium montmorillonites. Appl Clay Sci 56:103–109CrossRefGoogle Scholar
  12. 12.
    Becker O, Cheng Y-B, Varley RJ, Simon GP (2003) Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36:1616–1625CrossRefGoogle Scholar
  13. 13.
    Köster HM (1996) Mineralogical and chemical heterogeneity of three standard clay mineral samples. Clay Miner 31:417–422CrossRefGoogle Scholar
  14. 14.
    Breu J, Range KJ, Kohler EE, Wagner U (1993) Oxidation state of iron at the interface of composite basal lining systems. Appl Clay Sci 8:313–320CrossRefGoogle Scholar
  15. 15.
    Kornmann X, Thomann R, Mülhaupt R, Finter J, Berglund L (2002) Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. J Appl Polym Sci 86:2643–2652CrossRefGoogle Scholar
  16. 16.
    Möller MW, Handge UA, Kunz DA, Lunkenbein T, Altstädt V, Breu J (2010) Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 4:717–724CrossRefGoogle Scholar
  17. 17.
    Kalo H, Möller MW, Kunza DA, Breu J (2012) How to maximize the aspect ratio of clay nanoplatelets. Nanoscale 4:5633–5639CrossRefGoogle Scholar
  18. 18.
    Ziadeh M, Chwalka B, Kalo H, Schütz MR, Breu J (2012) A simple approach for producing high aspect ratio fluorohectorite nanoplatelets utilizing a stirred media mill (ball mill). Clay Miner 47:341–353CrossRefGoogle Scholar
  19. 19.
    Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner 40:441–453CrossRefGoogle Scholar
  20. 20.
    Goossens D (2008) Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology 55:65–96Google Scholar
  21. 21.
    KA Carrado, A Decarreau, S Petit, F Bergaya, G Lagaly (2006) Synthetic clay minerals and purification of natural clay. In: Handbook of clay science Bergaya F, Theng BKG, Lagaly G (eds), Chapter 4, 1st edn. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, LondonGoogle Scholar
  23. 23.
    Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45:487–506CrossRefGoogle Scholar
  24. 24.
    Liu T, Tjiu WC, Tong Y, He C, Goh SS, Chung T-S (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J Appl Polym Sci 94:1236–1244CrossRefGoogle Scholar
  25. 25.
    Messersmith PB, Giannelis EP (1994) Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater 6:1719–1725CrossRefGoogle Scholar
  26. 26.
    Zilg C, Thomann R, Finter J, Mülhaupt R (2000) The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydride-cured epoxy nanocomposites. Macromol Mater Eng 280–281:41–46CrossRefGoogle Scholar
  27. 27.
    Mouloud A, Cherif R, Fellahi S, Grohens Y, Pillin I (2012) Study of morphological and mechanical performance of amine-cured glassy epoxy–clay nanocomposites. J Appl Polym Sci 124:4729–4739Google Scholar
  28. 28.
    Shi H, Lan T, Pinnavaia TJ (1996) Interfacial effects on the reinforcement properties of polymer—organoclay nanocomposites. Chem Mater 8:1584–1587CrossRefGoogle Scholar
  29. 29.
    Yung KC, Wang J, Yue TM (2006) Modeling young’s modulus of polymer-layered silicate nanocomposites using a modified halpin-tsai micromechanical model. J Reinf Plast Compos 25:847–861CrossRefGoogle Scholar
  30. 30.
    Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800CrossRefGoogle Scholar
  31. 31.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39:933–961CrossRefGoogle Scholar
  32. 32.
    Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541CrossRefGoogle Scholar
  33. 33.
    Ziadeh M, Fischer B, Schmid J, Altstädt V, Breu J (2014) On the importance of specific interface area in clay nanocomposites of pmma filled with synthetic nano-mica. Polymer 55:3770–3781CrossRefGoogle Scholar
  34. 34.
    Zerda AS, Lesser AJ (2001) Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior. J Polym Sci B 39:1137–1146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Martin Heinz Kothmann
    • 1
  • Mazen Ziadeh
    • 2
  • Gökhan Bakis
    • 1
  • Agustin Rios de Anda
    • 1
    • 3
  • Josef Breu
    • 2
  • Volker Altstädt
    • 1
    Email author
  1. 1.Lehrstuhl für Polymere WerkstoffeUniversität BayreuthBayreuthGermany
  2. 2.Lehrstuhl für Anorganische Chemie IUniversität BayreuthBayreuthGermany
  3. 3.Centre de Recherche sur les Macromolécules Végétales (CERMAV), UPR 5301 CNRSSaint Martin d’HèresFrance

Personalised recommendations