Advertisement

Journal of Materials Science

, Volume 50, Issue 11, pp 4066–4074 | Cite as

Effect of substitution of SiO2 by CaO/CaF2 on structure and synthesis of transparent glass-ceramics containing CaF2 nanocrystals

  • Zhenlin WangEmail author
  • Laifei Cheng
Original Paper

Abstract

Oxyfluoride glass ceramics with varied composition in system SiO2–Al2O3–CaO–CaF2 with fixed content of alumina were synthesized by isothermal heat-treatment of melt-quenched glasses. The as-prepared glasses and glass-ceramics were characterized in thermodynamics, microstructure, crystalline phase, and morphology and optical properties. The results show that substitution of SiO2 by CaO and/or CaF2 leads to rupture of Si–O network and hence escalating disorder of glass structure. Glass transition temperature increases with substituting SiO2 by CaO but decreases by CaF2. Depending on glass composition and treating temperature, the initial crystalline phase CaF2 and the secondary phase anorthite can successively crystallized. Substitution of SiO2 by CaO and/or CaF2 may facilitate the precipitation of CaF2 crystal but suppress the crystallization of anorthite. Transparent glass ceramic containing nanosized CaF2 can be synthesized using glass with a molar ratio of SiO2 to (CaO + CaF2) approaching 1.3 via heat-treatment close to the initial crystallization temperature. Elevating treating temperature improves the crystallization of CaF2 but in return decreases transparency of the glass ceramics (GC).

Keywords

Differential Scanning Calorimetry CaF2 Glass Ceramic Differential Scanning Calorimetry Analysis Precursor Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the support of the Chinese 973 Fundamental Research (2011CB605806) and National Natural Science Foundation of China (50820145202).

References

  1. 1.
    Secu M, Secu CE, Polosan S, Aldica G, Ghica C (2009) Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 355:1869–1872CrossRefGoogle Scholar
  2. 2.
    Golshan NH, Yekta BE, Marghussian VK (2012) Crystallization and optical properties of a transparent mullite glass ceramic. Opt Mater 34:596–599CrossRefGoogle Scholar
  3. 3.
    Chen QJ, Zhang WJ, Huang XY, Dong GP, Peng MY, Zhang QY (2012) Efficient down- and up-conversion of Pr3+–Yb3+ co-doped transparent oxyfluoride glass ceramics. J Alloys Compd 513:139–144CrossRefGoogle Scholar
  4. 4.
    Deng W, Cheng JS (2012) New transparent glass ceramics containing large grain Eu3+: CaF2 nanocrystals. Mater Lett 73:112–114CrossRefGoogle Scholar
  5. 5.
    Lakshminarayana G, Yang R, Mao MF, Qiu JR, Kityk IV (2009) Photo luminescence of Sm3+, Dy3+, and Tm3+-doped transparent glass ceramics containing CaF2 nanocrystals. J Non-Cryst Solids 355:2668–2673CrossRefGoogle Scholar
  6. 6.
    Ghasemzadeh M, Nemati A, Baghshahi S (2012) Effects of nucleation agents on the preparation of transparent glass-ceramics. J Eur Ceram Soc 32:2989–2994CrossRefGoogle Scholar
  7. 7.
    Suzuki T, Masaki SI, Mizuno K, Ohishi Y (2011) Preparation of novel transparent glass ceramics containing fluoride crystals. Opt Mater 33:1943–1947CrossRefGoogle Scholar
  8. 8.
    Shinozaki K, Honma T, Oh-ishi K, Komatsu T (2012) Fluorine defecient layer at the surface of transparent glass-ceramics with CaF2 nanocrystals. J Phys Chem Solids 73:683–687CrossRefGoogle Scholar
  9. 9.
    Sun XY, Gu M, Huang SM, Jin XJ, Liu XL, Liu B, Ni C (2009) Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystals. J Lumin 129:773–777CrossRefGoogle Scholar
  10. 10.
    Bocker C, Munoz F, Duran A, Russel C (2011) Fluorine sites in glasses and transparent glass-ceramics of the system Na2O/K2O/Al2O3/SiO2/BaF2. J Solid State Chem 184:405–410CrossRefGoogle Scholar
  11. 11.
    Imanieh MH, Yekta BE, Marghussian V, Shakhesi S, Martín IR (2013) Crystallization of nano calcium fluoride in CaF2–Al2O3–SiO2 system. Solid State Sci 17:76–82CrossRefGoogle Scholar
  12. 12.
    Banijamali S, Yekta BE, Rezaie HR, Marghussian VK (2009) Crystallization and sintering characteristics of CaO–Al2O3–SiO2 glasses in the presence of TiO2, CaF2 and ZrO2. Thermochim Acta 488:60–65CrossRefGoogle Scholar
  13. 13.
    Mukherjee DP, Das SK (2013) SiO2–Al2O3–CaO glass-ceramics: effects of CaF2 on crystallization, microstructure and properties. Ceram Int 39:571–578CrossRefGoogle Scholar
  14. 14.
    Lu A, Long W, Chen Y (2012) Effect of Yb3+ ions content on crystallization of NaF–CaF2–Al2O3–SiO2 oxyfluoride glasses. Mater Lett 68:501–503CrossRefGoogle Scholar
  15. 15.
    Mukherjee DP, Das SK (2013) Effects of nano silica on synthesis and properties of glass ceramics in SiO2–Al2O3–CaO–CaF2 glass system: a comparison. J Non-Cryst Solids 368:98–104CrossRefGoogle Scholar
  16. 16.
    Aldica G, Secu M (2010) Investigations of the non-isothermal crystallization of CaF2 nanoparticles in Sm-doped oxy-fluoride glasses. J Non-Cryst Solids 356:1631–1636CrossRefGoogle Scholar
  17. 17.
    Shelby JE (2005) Structures of glasses. In: Miller M, Liaw P (eds) Introduction to glass science and technology, 2nd edn. The Royal Society of Chemistry, Cambridge, pp 72–99CrossRefGoogle Scholar
  18. 18.
    Bourhis EL (2008) Glass Structure. Glass mechanics and technology. Wiley-vch Verlag GmbH & Co. KGaA, Weinheim, pp 53–81Google Scholar
  19. 19.
    Kesavulu CR, Sreedhar VB, Jayasankar CK, Jang K, Shin DS, Yi SS (2014) Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application. Mater Res Bull 51:336–344CrossRefGoogle Scholar
  20. 20.
    Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts Part II: IR characteristics of carbonate groups in silicate glasses. Chem Geol 174:241–254CrossRefGoogle Scholar
  21. 21.
    Mahdy EA, Ibrahim S (2012) Influence of Y2O3 on the structure and properties of calcium magnesium aluminosilicate glasses. J Mol Struct 1027:81–86CrossRefGoogle Scholar
  22. 22.
    Kim GH, Sohn I (2012) Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2. J Non-Cryst Solids 358:1530–1537CrossRefGoogle Scholar
  23. 23.
    Dantas NO, Ayta WEF, Silv ACA, Cano NF, Silva SW, Morais PC (2011) Effect of Fe2O3 concentration on the structure of the SiO2–Na2O–Al2O3–B2O3 glass system. Spectrochim Acta Part A 81:140–143CrossRefGoogle Scholar
  24. 24.
    Shakeri MS, Rezvani M (2011) Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. Spectrochim Acta Part A 79:1920–1925CrossRefGoogle Scholar
  25. 25.
    Serqueira EO, Dantas NO, Anjos V, Bell MJV (2014) Raman spectroscopy of SiO2–Na2O–Al2O3–B2O3 glass doped with Nd3+ and CdS nanocrystals. J Alloys Compd 582:730–733CrossRefGoogle Scholar
  26. 26.
    Okuno M, Zotov N, Schmucker M, Schneider H (2005) Structure of SiO2–Al2O3 glasses: combined X-ray diffraction, IR and Raman studies. J Non-Cryst Solids 351:1032–1038CrossRefGoogle Scholar
  27. 27.
    Almeida RPF, Bocker C, Rüssel C (2008) Size of CaF2 crystals precipitated from glasses in the Na2O/K2O/CaO/CaF2/Al2O3/SiO2 system and percolation theory. Chem Mater 20:5916–5921CrossRefGoogle Scholar
  28. 28.
    Rüssel C (2005) Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 glasses. Chem Mater 17:5843–5847CrossRefGoogle Scholar
  29. 29.
    Bhattacharyya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett 9:2493–2496CrossRefGoogle Scholar
  30. 30.
    Barros JR, Bocker C, Rüssel C (2010) The effect of Er3+ and Sm3+ on phase separation and crystallization in Na2O/K2O/BaF2/BaO/Al2O3/SiO2 glasses. Solid State Sci 12:2086–2090CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Science and Technology on Thermostructural Composites Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China

Personalised recommendations