Skip to main content
Log in

Grain size evolution in Cu-based shape memory alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study of the grain growth kinetics in two shape memory alloys, CuAlBe and CuZnAl, is reported. Isothermal aging treatments at temperatures between 1023 and 1123 K were conducted, determining the grain size distribution as a function of time. The results show that the size distribution can be described by a log-normal type relationship, and is time-invariant. It was found that the arithmetic mean grain size almost coincide with the mode, which means that it is a representative parameter of the microstructure along the annealing time. The growth kinetics is strongly dependent on the aging temperature in CuZnAl, while is weakly in CuAlBe. It was verified that the grain size-time power law usually applied is not appropriate to describe the process, and an early departure from the ideal behavior is observed. The modification with a time-dependent dragging force gives a reasonable approximation to the grain growth kinetic. The obtained results are compared with the scarce data existing on this type of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van Humbeeck J, Kustov S (2005) Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms. Smart Mater Struct 14:S171–S185

    Article  Google Scholar 

  2. Otsuka K, Wayman CM (1999) Shape memory material, 1st edn. Cambridge University Press, New York

    Google Scholar 

  3. Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloys Compd 355:58–64

    Article  Google Scholar 

  4. Isalgue A, Fernandez J, Torra V, Lovey FC (2006) Conditioning treatments of Cu-Al-Be shape memory alloys for dampers. Mater Sci Eng A 438–440:1085–1088

    Article  Google Scholar 

  5. Montecinos S, Cuniberti A (2009) Aplicación de aleaciones con memoria de forma CuAlBe en amortiguamiento pasivo de estructuras civiles. Rev SAM 6(3):20–29

    Google Scholar 

  6. Wang J, Wang Y, Schaublin R, Abromeit C, Gotthardt R (2006) The effect of point defects on the martensitic phase transformation. Mater Sci Eng A 438–440:102–108

    Article  Google Scholar 

  7. Gröger R, Lookman T, Saxena A (2008) Distribution of the order parameter below Tc for a dislocation-free medium. Phys Rev B 78:184101

    Article  Google Scholar 

  8. Lovey FC, Torra V (1999) Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Prog Mater Sci 44:189–289

    Article  Google Scholar 

  9. Somoza A, Romero R, Ll Mañosa, Planes A (1999) Aging behavior in Cu-Al-Be shape memory alloy. J Appl Phys 85:130–133

    Article  Google Scholar 

  10. Montecinos S, Cuniberti A, Romero R (2011) Effect of grain size on the stress-temperature relationship in a β CuAlBe shape memory alloy. Intermetallics 19:35–38

    Article  Google Scholar 

  11. Montecinos S, Cuniberti A (2008) Thermomechanical behavior of a CuAlBe shape memory alloy. J Alloys Compd 457:332–336

    Article  Google Scholar 

  12. Paradkar AG, Kamat SV, Gogia AK, Kashyap BP (2009) On the validity of Hall–Petch equation for single-phase β Ti-Al-Nb alloys undergoing stress-induced martensitic transformation. Mater Sci Eng A 520:168–173

    Article  Google Scholar 

  13. Khan AQ, Brabers MJ, Delaey L (1974) The Hall-Petch relationship in copper-based martensites. Mater Sci Eng 15:263–274

    Article  Google Scholar 

  14. Huang X, Wu DT, Zhao D, Ramirez AG (2013) Strengthening metals by narrowing grain size distributions in nickel-titanium thin films. J Mater Res 28:1289–1294

    Article  Google Scholar 

  15. Ergen S, Uzun O, Yilmaz F, Kilicaslan MF (2013) Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys. Mat Charact 80:92–97

    Article  Google Scholar 

  16. Montecinos S, Cuniberti A, Sepúlveda A (2008) Grain size and pseudoelastic behaviour of a CuAlBe alloy. Mater Charact 59:117–123

    Article  Google Scholar 

  17. Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2004) Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Mater Sci Eng A 378:278–282

    Article  Google Scholar 

  18. Khan AQ (1974) The application and interpretation of the “time law” to the growth of β grain size and martensite plate thickness in copper-based martensites. J Mater Sci 9:1290–1296. doi:10.1007/BF00551846

    Article  Google Scholar 

  19. White SM, Cook JM, Stobbs WM (1982) The grain size dependence of the loading and reversion behaviour of a Cu-Zn-Al MARMEM alloy deformed below Mf. J Phys-Paris 12:779–783

    Google Scholar 

  20. Arneodo Larochette P, Ahlers M (2003) Grain-size dependence of the two-way shape memory effect obtained by stabilisation in Cu-Zn-Al crystals. Mater Sci Eng A 361:249–257

    Article  Google Scholar 

  21. Montecinos S, Cuniberti A (2014) Effects of grain size on plastic deformation in a β CuAlBe shape memory alloy. Mater Sci Eng A 600:176–180

    Article  Google Scholar 

  22. Elst R, Van Humbeeck J, Delaey L (1985) Grain growth in β-copper-alloys. Z Metallkde 76:704–708

    Google Scholar 

  23. Wang FT, Chen FX, Wei ZG, Yang DZ (1991) The effects of microelements on the grain refining and the grain growth behaviors of CuZnAl shape memory alloy. Scr Metall Mater 25:2565–2570

    Article  Google Scholar 

  24. Guilemany JM, Gil FJ (1991) Kinetic grain growth in Cu-Zn-Al shape memory alloys. J Mater Sci 26:4626–4630. doi:10.1007/BF00612397

    Article  Google Scholar 

  25. Stipcich M, Romero R (1998) The effect of Ti-B on stabilization of Cu-Zn-Al martensite. Scr Mater 39:1199–1204

    Article  Google Scholar 

  26. Lanzini F, Romero R, Stipcich M, Castro ML (2008) Long-range ordering in β-Cu-Zn-Al: experimental and theoretical study. Phys Rev B 77:134207

    Article  Google Scholar 

  27. Montecinos S, Cuniberti A, Castro ML (2010) Kinetics of isothermal decomposition in polycrystalline β CuAlBe alloys. Intermetallics 18:36–41

    Article  Google Scholar 

  28. Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals, 1st edn. CRC Press LLC, Florida

    Google Scholar 

  29. Atkinson HV (1988) Theories of normal grain growth in pure single phase systems. Acta Metall 36:469–491

    Article  Google Scholar 

  30. Ahlers M (1986) Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys. Prog Mat Sc 30:135–186

    Article  Google Scholar 

  31. Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238

    Article  Google Scholar 

  32. Rios PR (1990) Effect of size distribution on the kinetics of normal grain growth and of particle coarsening. Acta Metall 38:2017–2021

    Article  Google Scholar 

  33. Kusama T, Omori T, Saito T, Ohnuma I, Ishida K, Kainuma R (2013) Two- and three-dimensional grain growth in the Cu-Al-Mn shape memory alloy. Mater Trans 54:2044–2048

    Article  Google Scholar 

  34. Abbruzzese G, Lucke K (1986) A theory of texture controlled grain growth-I. Derivation and general discussion of the model. Acta Metall 34:905–914

    Article  Google Scholar 

  35. Eichelkraut H, Abbruzzese G, Lucke K (1988) A theory of texture controlled grain growth-II. Numerical and analytical treatment of grain growth in the presence of two texture components. Acta Metall 36:55–68

    Article  Google Scholar 

  36. Gottstein G, Shvindlerman LS, Zhao B (2010) Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments. Scr Mater 62:914–917

    Article  Google Scholar 

  37. Holm EA, Foiles SM (2010) How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328:1138–1141

    Article  Google Scholar 

  38. Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall 10:789–798

    Article  Google Scholar 

  39. Hillert M, Sundman B (1976) A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall 24:731–743

    Article  Google Scholar 

  40. Mendelev MI, Srolovitzy DJ (2001) Grain-boundary migration in the presence of diffusing impurities: simulations and analytical models. Phil Mag A 81:2243–2269

    Article  Google Scholar 

  41. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater 47:2143–2152

    Article  Google Scholar 

  42. Van Humbeeck J, Segers D, Delaey L (1985) The stabilization of martensite of step quenched CuZnAl martensite-Part III. Scr Metall 19:477–480

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET, ANPCYT, SECAT-UNCentro, and CICPBA, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Montecinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montecinos, S., Cuniberti, A., Romero, R. et al. Grain size evolution in Cu-based shape memory alloys. J Mater Sci 50, 3994–4002 (2015). https://doi.org/10.1007/s10853-015-8956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8956-6

Keywords

Navigation