Journal of Materials Science

, Volume 50, Issue 10, pp 3795–3802 | Cite as

Nonequivalent-F-induced relaxations in LaF3 single crystals over a broad temperature range

  • Jing Wang
  • Chunchang WangEmail author
  • Xiaohong Sun
  • Jian Zhang
  • Jun Zheng
  • Chao Cheng
  • Hong Wang
  • Yide Li
  • Shouguo Huang
Original Paper


The dielectric properties of LaF3 single crystals were investigated in the temperature range from 110 to 773 K and the frequency range from 100 Hz to 10 MHz. Two thermally activated relaxations (R1 and R2) and a dielectric anomaly (A) were observed. The lower temperature relaxation (R1) was ascribed to a polaronic relaxations due to fluorine ions diffusion within the F1 sublattice and fluorine ions hopping in F1 sublattice. The higher temperature relaxation (R2) is Maxwell–Wagner relaxation due to the blocking of electrodes associated with the ionic exchange between F1 and F2,3 sublattices and among the three nonequivalent sublattices. The anomaly appearing in the highest temperature range is related to the inductive effect arising from the coupled electron-ionic inductive response.


LaF3 Dielectric Anomaly Delocalized Carrier Tysonite Structure Spectroscopic Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank financial support from the National Natural Science Foundation of China (Grant No. 11074001) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry. This work was supported in part by the open research fund of key laboratory of MEMS of Ministry of Education, Southeast University of China, and the Doctoral Startup Foundation of Anhui University (Grant No. 33190077).


  1. 1.
    Yusuke T, Kinichi M (2002) Hetero-epitaxial growth and optical properties of LaF3 on CaF2. Thin Solid Films 420–421:30–37Google Scholar
  2. 2.
    Lilly AC, LaRoy BC, Tiller CO, Whiting B (1973) Transport properties of LaF3 thin films. J Electrochem Soc 120(12):1673–1676CrossRefGoogle Scholar
  3. 3.
    Szeponik J, Moritz W (1990) A new structure for chemical sensor devices. Sens Actuators B 2(4):243–246CrossRefGoogle Scholar
  4. 4.
    Moritz W, Müller L (1991) Mechanistic study of fluoride ion sensors. Analyst 116:589–593CrossRefGoogle Scholar
  5. 5.
    Komljenovic J, Krka S, Radic N (1986) All-solid-state fluoride electrode. Anal Chem 58(13):2893–2895CrossRefGoogle Scholar
  6. 6.
    Waynant RW, Klein PH (1985) Vacuum ultraviolet laser emission from Nd+3: LaF3. Appl Phys Lett 46(1):14–16CrossRefGoogle Scholar
  7. 7.
    Ehrlich DJ, Moulton PF, Osgood RM (1980) Optically pumped Ce: LaF3 laser at 286 nm. Opt Lett 5(8):339–341CrossRefGoogle Scholar
  8. 8.
    Zalkin A, Templeton DH (1985) Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data. Acta Crystallogr Sect B 41(2):91–93CrossRefGoogle Scholar
  9. 9.
    Maximov B, Schulz H (1985) Space group, crystal structure and twinning of lanthanum trifluoride. Acta Crystallogr Sect B 41(2):88–91CrossRefGoogle Scholar
  10. 10.
    Rhandour A, Reau JM, Matar SF, Tian SB, Hagenmuller P (1985) New fluorine ion conductors with tysonite-type structure. Mater Res Bull 20(11):1309–1327CrossRefGoogle Scholar
  11. 11.
    Privalov AF, Vieth HM, Murin IV (1994) Nuclear magnetic resonance study of superionic conductors with tysonite structure. J Phys 6(40):8237–8243Google Scholar
  12. 12.
    Privalov AF, Lips O, Fujara F (2002) Dynamic processes in the superionic conductor LaF3 at high temperatures as studied by spin-lattice relaxation dispersion. J Phys 14(17):4515–4525Google Scholar
  13. 13.
    Blaha P, Singh D, Sorantin PI, Schwarz K (1992) Resistivity anomaly during the process of separation of phases of a binary alloy. Phys Rev B 46(4):1321–1325CrossRefGoogle Scholar
  14. 14.
    Chadwick AV, Hope DS, Jaroszkiewicz G, Strange JH (1979) NMR and conductivity studies of ionic transport in LaF3. In: Vashishta P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, pp 683–686Google Scholar
  15. 15.
    Krivorotov VF, Nuzhdov GS, Fridman AA, Charnaya EV (2013) Quantum chemical calculations of intracell potential profile in superionic transition range in LaF3. Russ J Electrochem 49(12):1154–1159CrossRefGoogle Scholar
  16. 16.
    Ngoepe PE, Jordan WM, Catlow CRA, Comins JD (1990) Computer modeling and Brillouin scattering studies of anharmonicity and high-temperature disorder in LaF3. Phys Rev B 41(6):3815–3823CrossRefGoogle Scholar
  17. 17.
    Sher A, Solomon R, Lee K, Muller MW (1966) Transport Properties of LaF3. Phys Rev 144:593–604CrossRefGoogle Scholar
  18. 18.
    Frölich H (1958) Theory of dielectrics: dielectric constant and dielectric loss. Clarendon, Oxford, p 70Google Scholar
  19. 19.
    Iguchi E, Ueda K, Jung WH (1996) Conduction in LaCoO3 by small-polaron hopping below room temperature. Phys Rev B 54(24):17431–17437CrossRefGoogle Scholar
  20. 20.
    Nobre MAL, Lanfred S (2003) Grain boundary electric characterization of Zn7Sb2O12 semiconducting ceramic: a negative temperature coefficient thermistor. J Appl Phys 93(9):5576–5582CrossRefGoogle Scholar
  21. 21.
    Li W, Schwartz RW (2007) Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys Rev B 75(1):012104CrossRefGoogle Scholar
  22. 22.
    Nobre MAL, Lanfredi S (2000) Impedance spectroscopy analysis of high-temperature phase transitions in sodium lithium niobate ceramics. J Phys Condens Mater 12(35):7833–7841CrossRefGoogle Scholar
  23. 23.
    Cao WQ, Gerhsrdt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation. Solid State Ion 42(3–4):213–221CrossRefGoogle Scholar
  24. 24.
    Wang CC, Lei CM, Wang GJ, Sun XH, Li T, Huang SG, Wang H, Li YD (2013) Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J Appl Phys 113(9):094103CrossRefGoogle Scholar
  25. 25.
    Wang CC, Zhang MN, Xia W (2013) High-temperature dielectric relaxation in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J Am Ceram Soc 96(5):1521–1525CrossRefGoogle Scholar
  26. 26.
    Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66(8):3850–3856CrossRefGoogle Scholar
  27. 27.
    Greenlee JD, Calley WL, Moseley MW, Doolittle WA (2013) Comparison of interfacial and bulk ionic motion in analog memristors. IEEE Trans Electron Devices 60(1):427–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jing Wang
    • 1
  • Chunchang Wang
    • 1
    Email author
  • Xiaohong Sun
    • 1
  • Jian Zhang
    • 2
  • Jun Zheng
    • 3
  • Chao Cheng
    • 3
  • Hong Wang
    • 1
  • Yide Li
    • 1
  • Shouguo Huang
    • 1
  1. 1.Laboratory of Dielectric Functional Materials, School of Physics & Material ScienceAnhui UniversityHefeiPeople’s Republic of China
  2. 2.School of Electronics Science and Applied PhysicsHefei University of TechnologyHefeiPeople’s Republic of China
  3. 3.Center of Modern Experimental TechnologyAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations