Journal of Materials Science

, Volume 50, Issue 9, pp 3425–3433 | Cite as

Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach

  • Olena OkhayEmail author
  • Rahul Krishna
  • Alexander Tkach
  • Mathias Kläui
  • Luis M. Guerra
  • João Ventura
  • Elby Titus
  • Jose J.A. Gracio
Original Paper


Strong increase in electrical conductivity of graphene oxide (GO) (I ≈ 10−9 A) is found by addition of Ni nanoparticles (NiNPs) preliminarily solved by HCl (Nisol) (I ≈ 10−4 A) or powder (Nipow) obtained from this solution (I ≈ 10−6 A), while simply mixing GO with NiNPs an insulator similar to pure GO is obtained. Thus, Nisol and Nipow can be used to transform GO from insulator to semiconductor. One of the transformation mechanisms is Ni as spillover. At the same time, different kinds of the magnetic response are obtained on GO and reduced GO (rGO) samples with and without Ni. Weak paramagnetic response is detected in pure GO. Stronger paramagnetic behavior is observed for GO and rGO mixed with Nisol or Nipow. Pure rGO sample shows weak ferromagnetism represented by slim but visible hysteresis with remnant magnetization M r of 0.05 emu/g. GO with NiNPs presents clear hysteresis with M r of 2.8 emu/g, while sample prepared by addition of NiNPs to rGO presents the largest hysteresis with M r as high as 11.8 emu/g. Thus, the optimal procedure to obtain the magnetic response requested for particular application can be chosen.


Graphene Oxide Hydrazine Hydrate Resistive Switching Remnant Magnetization Switching Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Olena Okhay acknowledges FCT for financial support (SFRH/BD/77704/2011). This work was funded also by the EU’s 7th Framework program IFOX (NMP3-LA-2010 246102), the Graduate School of Excellence MAINZ (GSC 266 Mainz), the German Science Foundation (DFG SPP 1459 Graphene), and the ERC (2007-Stg 208162). Alexander Tkach acknowledges also funds by FEDER through Programa Operacional Factores de Competitividade—COMPETE and national funds through FCT within CICECO Project—FCOMP-01-0124-FEDER-037271 (FCT Ref. PEst-C/CTM/LA0011/2013) and independent researcher grant IF/00602/2013.


  1. 1.
    Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5CrossRefGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  3. 3.
    Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5CrossRefGoogle Scholar
  4. 4.
    Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388CrossRefGoogle Scholar
  5. 5.
    Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415CrossRefGoogle Scholar
  6. 6.
    Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4Google Scholar
  7. 7.
    Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4Google Scholar
  8. 8.
    Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722CrossRefGoogle Scholar
  9. 9.
    Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5CrossRefGoogle Scholar
  10. 10.
    Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923CrossRefGoogle Scholar
  11. 11.
    Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747CrossRefGoogle Scholar
  12. 12.
    Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4Google Scholar
  13. 13.
    Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10CrossRefGoogle Scholar
  14. 14.
    Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRefGoogle Scholar
  15. 15.
    Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022CrossRefGoogle Scholar
  16. 16.
    Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5CrossRefGoogle Scholar
  17. 17.
    Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397CrossRefGoogle Scholar
  18. 18.
    Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869CrossRefGoogle Scholar
  19. 19.
    Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79CrossRefGoogle Scholar
  20. 20.
    Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912CrossRefGoogle Scholar
  21. 21.
    Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRefGoogle Scholar
  22. 22.
    Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215CrossRefGoogle Scholar
  23. 23.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  24. 24.
    Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, LondonGoogle Scholar
  26. 26.
    Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459CrossRefGoogle Scholar
  28. 28.
    Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158CrossRefGoogle Scholar
  29. 29.
    Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305CrossRefGoogle Scholar
  30. 30.
    Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266Google Scholar
  32. 32.
    Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31CrossRefGoogle Scholar
  33. 33.
    Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3Google Scholar
  34. 34.
    Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534CrossRefGoogle Scholar
  35. 35.
    Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4Google Scholar
  36. 36.
    Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRefGoogle Scholar
  37. 37.
    Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985CrossRefGoogle Scholar
  38. 38.
    Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Olena Okhay
    • 1
    Email author
  • Rahul Krishna
    • 1
  • Alexander Tkach
    • 2
    • 3
  • Mathias Kläui
    • 2
  • Luis M. Guerra
    • 4
  • João Ventura
    • 4
  • Elby Titus
    • 1
  • Jose J.A. Gracio
    • 1
  1. 1.Nanotechnology Research Division, Department of Mechanical Engineering, Center for Mechanical Technology and Automation (TEMA)University of AveiroAveiroPortugal
  2. 2.Institute of of PhysicsJohannes Gutenberg University, MainzMainzGermany
  3. 3.CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic EngineeringUniversity of AveiroAveiroPortugal
  4. 4.Institute of Physics of Materials of the University of Porto (IFIMUP)PortoPortugal

Personalised recommendations