Journal of Materials Science

, Volume 50, Issue 9, pp 3409–3415 | Cite as

The heat capacities of thermomiotic ScF3 and ScF3–YF3 solid solutions

  • Carl P. Romao
  • Cody R. Morelock
  • Michel B. Johnson
  • J. W. Zwanziger
  • Angus P. Wilkinson
  • Mary Anne White
Original Paper

Abstract

Scandium trifluoride (ScF3) exists in a cubic ReO3 structure that exhibits negative thermal expansion from 10 to 1100 K, while substituted Sc1−xYxF3 materials display the same behavior at room temperature but transition into positive thermal expansion rhombohedral phases upon cooling. We have measured the heat capacity of ScF3 from 0.4 to 390 K and found no evidence of a phase transition, but do find that its low-temperature heat capacity is anomalously high. The heat capacities of substituted Sc1−xYxF3 materials are also reported and show evidence of the cubic-rhombohedral phase transition for x ≥ 0.1 and smaller anomalies in the low-temperature heat capacity of the positive thermal expansion rhombohedral phases. To aid in interpretation of these results, the heat capacity of ScF3 was calculated from its phononic structure using density functional theory.

Supplementary material

10853_2015_8899_MOESM1_ESM.docx (536 kb)
Supplementary material 1 (DOCX 537 kb)

References

  1. 1.
    Romao CP, Miller KJ, Whitman CA, White MA, Marinkovic BA (2013) Negative thermal expansion (thermomiotic) materials. In: Reedijk J, Poppelmeier K (eds) Comprehensive inorganic chemistry, vol 4. Elsevier, Oxford, pp 128–151Google Scholar
  2. 2.
    Greve BK, Martin KL, Lee PL, Chupas PJ, Chapman KW, Wilkinson AP (2010) Pronounced negative thermal expansion from a simple structure: cubic ScF3. J Am Chem Soc 132:15496–15498CrossRefGoogle Scholar
  3. 3.
    Li CW, Tang X, Muñoz JA, Keith JB, Tracy SJ, Abernathy DL, Fultz B (2011) Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys Rev Lett 107:195504-1–195504-5Google Scholar
  4. 4.
    Morelock CR, Greve BK, Gallington LC, Chapman KW, Wilkinson AP (2013) Negative thermal expansion and compressibility of Sc1−xYxF3 (x ≤ 0.25). J Appl Phys 114:213501-1–213501-8CrossRefGoogle Scholar
  5. 5.
    Allen PB, Chen YR, Chaudhuri S, Grey CP (2006) Octahedral tilt instability of ReO3-type crystals. Phys Rev B 73:172102-1–172102-4Google Scholar
  6. 6.
    Morelock CR, Gallington LC, Wilkinson AP (2014) Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3. Chem Mater 26:1936–1940CrossRefGoogle Scholar
  7. 7.
    White MA (2012) Physical properties of materials. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Romao CP, Miller KJ, Johnson MB, Zwanziger JW, Marinkovic BA, White MA (2014) Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion. Phys Rev B 90:024305-1–024305-9CrossRefGoogle Scholar
  9. 9.
    Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR, pp 86–748Google Scholar
  10. 10.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213CrossRefGoogle Scholar
  11. 11.
    Kennedy CA, Stancescu M, Marriott RA, White MA (2007) Recommendations for accurate heat capacity measurements using a quantum design physical property measurement system. Cryogenics 47:107CrossRefGoogle Scholar
  12. 12.
    Johnson MB, White MA (2014) Thermal methods. In: Bruce DW, O’Hare D, Walton RI (eds) Inorganic materials: multi length-scale characterization chap 2. Wiley, New York, pp 63–120Google Scholar
  13. 13.
    Gonze X, Amadon B, Anglade P-M et al (2009) ABINIT : first-principles approach to material and nanosystem properties. Comput Phys Commun 180:2582–2615CrossRefGoogle Scholar
  14. 14.
    Gonze X, Beuken J-M, Caracas R et al (2002) First-principles computation of material properties: the ABINIT software project. Comp Mater Sci 25:478–492CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  18. 18.
    Drymiotis FR, Ledbetter H, Betts JB, Kimura T, Lashley JC, Migliori A, Ramirez AP, Kowach GR (2004) Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). Phys Rev Lett 93:025502–1–025502-4Google Scholar
  19. 19.
    Gallington LC, Chapman KW, Morelock CR, Chupas PJ, Wilkinson AP (2014) Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order-disorder phase transition. J Appl Phys 115:053512-1–053512-5CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  21. 21.
    Ledbetter HM (1973) Estimation of Debye temperatures by averaging elastic coefficients. J Appl Phys 44:1451–1454CrossRefGoogle Scholar
  22. 22.
    Mittal R, Chaplot SL, Kolesnikov AI, Loong C-K, Mary TA (2003) Inelastic neutron scattering and lattice dynamical calculation of negative thermal expansion in HfW2O8. Phys Rev B 68:054302-1–054302-7CrossRefGoogle Scholar
  23. 23.
    Zwanziger JW (2007) Phonon dispersion and Grüneisen parameters of zinc dicyanide and cadmium dicyanide from first principles: origin of negative thermal expansion. Phys Rev B 76:052102-1–052102-4CrossRefGoogle Scholar
  24. 24.
    Kennedy CA, White MA (2005) Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8. Solid State Commun 134:271–276CrossRefGoogle Scholar
  25. 25.
    Miller KJ, Johnson MB, White MB, Marinkovic BA (2012) Low-temperature investigations of the open-framework material HfMgMo3O12. Solid State Commun 152:1748–1752CrossRefGoogle Scholar
  26. 26.
    Jakubinek MB, Whitman CA, White MA (2010) Negative thermal expansion materials: thermal properties and implications for composite materials. J Therm Anal Calorim 99:165–172CrossRefGoogle Scholar
  27. 27.
    Yamamura Y, Ikeuchi S, Saito K (2009) Characteristic phonon spectrum of negative thermal expansion materials with framework structure through calorimetric study of Sc2M3O12 (M = W and Mo). Chem Mater 21:3008–3016CrossRefGoogle Scholar
  28. 28.
    Zunger A, Wei S-H, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356CrossRefGoogle Scholar
  29. 29.
    Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55:247–352CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carl P. Romao
    • 1
  • Cody R. Morelock
    • 2
  • Michel B. Johnson
    • 1
  • J. W. Zwanziger
    • 1
  • Angus P. Wilkinson
    • 2
    • 3
  • Mary Anne White
    • 1
  1. 1.Department of Chemistry and Institute for Research in MaterialsDalhousie UniversityHalifaxCanada
  2. 2.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations