Journal of Materials Science

, Volume 50, Issue 8, pp 3051–3056 | Cite as

Cationic surface segregation in doped LaMnO3

  • V. SharmaEmail author
  • M. K. Mahapatra
  • P. Singh
  • R. Ramprasad
Original Paper


The surface cation chemistry in (La, A)MnO3 (A = Ca, Sr and Ba) is investigated using first-principles thermodynamics. We find that, all three dopants tend to segregate to the surface over a wide range of T– \( p_{{{\text{O}}_{2} }} \) conditions and the tendency for segregation increases with the increase in the dopant cationic size. Moving toward the low oxygen pressure, dopants prefer to remain in the surface regions accompanied by the appropriate number of charge compensating oxygen vacancies. The situation when dopants remain in the bulk regions tends to occur close to the thermodynamic conditions that also favor the decomposition of LaMnO3. The present work serves as an important step toward understanding of factors governing the cationic surface segregation in doped LaMnO3 and opens a pathway to study other important chemical environments (such as water- and CO2-containing air) which are crucially given the fact that the ‘real-world’ air enhances cationic segregation.


Density Functional Theory Oxygen Reduction Reaction Surface Segregation LaCoO3 Bulk Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported through a grant from the Office of Fossil Energy, US Department of Energy (DE-FE-0009682). Authors acknowledge the partial computational support through a NSF Teragrid Resource Allocation. Discussions with Hom Sharma, Yenny Cardona-Quintero, and Venkatesh Botu at University of Connecticut are gratefully acknowledged.


  1. 1.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4844CrossRefGoogle Scholar
  2. 2.
    Jacobson AJ (2010) Materials for Solid Oxide Fuel Cells. Chem Mater 22(3):660–674CrossRefGoogle Scholar
  3. 3.
    Cai Z, Kubicek M, Fleig J, Yildiz B (2012) Chemical heterogeneities on La 0.6Sr 0.4CoO3—δ thin films—correlations to cathode surface activity and stability. Chem Mater 24(6):1116–1127CrossRefGoogle Scholar
  4. 4.
    Cai Z, Kuru Y, Han JW, Chen Y, Yildiz B (2011) Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La 0.8Sr 0.2CoO3 thin films. J Am Chem Soc 133(44):17696–17704CrossRefGoogle Scholar
  5. 5.
    Lee W, Han JW, Chen Y, Cai Z, Yildiz B (2013) Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc 135(21):7909–7925CrossRefGoogle Scholar
  6. 6.
    Crumlin EJ, Mutoro E, Liu Z et al (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5(3):6081CrossRefGoogle Scholar
  7. 7.
    Herger R, Willmott P, Schlepütz C, et al (2008) Structure determination of monolayer-by-monolayer grown La1—xSrxMnO3 thin films and the onset of magnetoresistance. Phys. Rev. B 77(8):085401Google Scholar
  8. 8.
    Mastrikov YA, Merkle R, Heifets E, Kotomin EA, Maier J (2010) Pathways for oxygen incorporation in mixed conducting perovskites: A DFT-based mechanistic analysis for (La, Sr)MnO3—δ. J Phys Chem C 114(7):3017–3027CrossRefGoogle Scholar
  9. 9.
    Choi SO, Penninger M, Kim CH, Schneider WF, Thompson LT (2013) Experimental and computational investigation of effect of Sr on NO oxidation and oxygen exchange for La 1—xSr xCoO3 perovskite catalysts. ACS Catal. 3(12):2719–2728CrossRefGoogle Scholar
  10. 10.
    Jalili H, Han JW, Kuru Y, Cai Z, Yildiz B (2011) New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La 0.7Sr 0.3MnO3. J Phys Chem Lett 2(7):801–807CrossRefGoogle Scholar
  11. 11.
    Piskunov S, Heifets E, Jacob T, et al (2008) Electronic structure and thermodynamic stability of LaMnO3 and La1—xSrxMnO3 (001) surfaces: Ab initio calculations. Phys Rev B 78(12):121406Google Scholar
  12. 12.
    Choi Y, Mebane DS, Lin MC, Liu M (2007) Oxygen reduction on LaMnO3-based cathode materials in solid oxide fuel cells. Chem Mater 19(7):1690–1699CrossRefGoogle Scholar
  13. 13.
    Puchala B, Lee YL, Morgan D (2013) A-site diffusion in La1—xSrxMnO3: ab initio and kinetic monte carlo calculations. J Electrochem Soc 160(8):F877–F882CrossRefGoogle Scholar
  14. 14.
    Jiang SP, Love JG (2001) Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells. Solid State Ionics 138:183–190CrossRefGoogle Scholar
  15. 15.
    Wu Q-H, Liu M, Jaegermann W (2005) X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater Lett 59(12):1480–1483CrossRefGoogle Scholar
  16. 16.
    Fister TT, Fong DD, Eastman JA et al (2008) In situ characterization of strontium surface segregation in epitaxial La[sub 0.7]Sr[sub 0.3]MnO[sub 3] thin films as a function of oxygen partial pressure. Appl Phys Lett 93(15):151904CrossRefGoogle Scholar
  17. 17.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269CrossRefGoogle Scholar
  18. 18.
    Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Mateials Science 6:15–50Google Scholar
  19. 19.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11182CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  21. 21.
    Raisch C, Langheinrich C, Werner R et al (2013) X-ray photoelectron diffraction study of dopant effects in La0.7X0.3MnO3 (X = La, Sr, Ca, Ce) thin films. J Appl Phys 113(6):063511CrossRefGoogle Scholar
  22. 22.
    Akhade SA, Kitchin JR (2011) Effects of strain, d-band filling, and oxidation state on the bulk electronic structure of cubic 3d perovskites. J Chem Phys 135(10):104702CrossRefGoogle Scholar
  23. 23.
    Su H-Y, Sun K (2014) DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites. J Mater SciGoogle Scholar
  24. 24.
    Sharma V, Pilania G, Rossetti GA, Slenes K, Ramprasad R (2013) Comprehensive examination of dopants and defects in BaTiO_{3} from first principles. Phys Rev B 87(13):134109Google Scholar
  25. 25.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys 9:767–808Google Scholar
  26. 26.
    Lee Y-L, Kleis J, Rossmeisl J, Morgan D (2009) Ab initio energetics of LaBO_{3}(001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys Rev B 80(22):224101Google Scholar
  27. 27.
    Jain A, Hautier G, Ong SP, et al (2011) Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 84(4):045115Google Scholar
  28. 28.
    Staruch M, Sharma V, Cruz dela C, Ramprasad R, Jain M (2014) Magnetic ordering in TbMn0.5Cr0.5O3 studied by neutron diffraction and first-principles calculations. J Appl Phys 116(3):033919CrossRefGoogle Scholar
  29. 29.
    Zhu H, Tang C, Ramprasad R (2010) Phase equilibria at Si-HfO_{2} and Pt-HfO_{2} interfaces from first principles thermodynamics. Phys Rev B 82(23):235413Google Scholar
  30. 30.
    Han JW, Kitchin JR, Sholl DS (2009) Step decoration of chiral metal surfaces. J Chem Phys 130(12):124710CrossRefGoogle Scholar
  31. 31.
    Hu B, Keane M, Mahapatra MK, Singh P (2014) Stability of strontium-doped lanthanum manganite cathode in humidified air. J Power Sources 248:196–204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Sharma
    • 1
    • 2
    Email author
  • M. K. Mahapatra
    • 1
    • 3
  • P. Singh
    • 1
    • 3
  • R. Ramprasad
    • 1
    • 2
  1. 1.Materials Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  3. 3.Center for Clean Energy EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations