Journal of Materials Science

, Volume 50, Issue 6, pp 2544–2553 | Cite as

Analysis of metal catalyst content in magnetically filtered SWCNTs by SQUID magnetometry

  • Barbara Pacakova
  • Zuzana Kominkova
  • Jana VejpravovaEmail author
  • Alice Mantlikova
  • Martin Kalbac
Original Paper


Removal of the residual magnetic metal catalyst from the single-wall carbon nanotubes (SWCNTs) is important prerequisite for many further applications. We present here a facile analysis method enabling direct control of the removed fraction of the catalyst nanoparticles (NPs) after purification. Determination of distribution of the magnetic moments attributed to the catalyst NPs enables proper interpretation of the efficiency and mechanism of the used purification process. The study has been performed on the SWCNTs containing magnetic metal NPs, exposed to sonication and magnetic filtration. Two different SWCNT precursors (HiPco and laser ablation SWCNTs), three solvents and multiple filtration steps, respectively, have been tested. Magnetic property measurements are supported by the results of thermal decomposition and Raman spectroscopy.


Interparticle Interaction Filtration Step Magnetic Filtration SWCNT Sample Metallic SWCNTs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Grant Agency of the Czech Republic under Project No. P204/10/1677. Magnetic measurements were performed in MLTL (, which is supported within the program of Czech Research Infrastructures (Project No. LM2011025).

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

10853_2014_8813_MOESM1_ESM.pdf (480 kb)
Supplementary material 1 (pdf 479 KB)


  1. 1.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581. doi: 10.1038/nmat3064 CrossRefGoogle Scholar
  2. 2.
    Bittova B, Poltierova Vejpravova J, Kalbac M, Burianova S, Mantlikova A, Danis S, Doyle S (2011) Magnetic properties of iron catalyst particles in HiPco single wall carbon nanotubes. J Phys Chem C 115:17303–17309. doi: 10.1021/jp203365g CrossRefGoogle Scholar
  3. 3.
    Bittova B, Vejpravova JP, Morales MP, Roca AG, Niznansky D, Mantlikova A (2012) Influence of aggregate coating on relaxations in the systems of iron oxide nanoparticles. Nano 07:1250004. doi: 10.1142/S179329201250004X CrossRefGoogle Scholar
  4. 4.
    Bittova BP, Kalbac M, Kubickova S, Mantlikova A, Mangold S, Vejpravova J (2013) Structure and magnetic response of a residual metal catalyst in highly purified single walled carbon nanotubes. Phys Chem Chem Phys 15:5992–6000. doi: 10.1039/C3CP00087G CrossRefGoogle Scholar
  5. 5.
    Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A 19:1800–1805. doi: 10.1116/1.1380721 CrossRefGoogle Scholar
  6. 6.
    Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921. doi: 10.1063/1.3551582 CrossRefGoogle Scholar
  7. 7.
    Chen DX, Sanchez A, Taboada E, Roig A, Sun N, Gu HC (2009) Size determination of superparamagnetic nanoparticles from magnetization curve. J Appl Phys 105:083924. doi: 10.1063/1.3117512 CrossRefGoogle Scholar
  8. 8.
    Chen TC, Zhao MQ, Zhang Q, Tian GL, Huang JQ, Wei F (2013) In situ monitoring the role of working metal catalyst nanoparticles for ultrahigh purity single-walled carbon nanotubes. Adv Funct Mater 23:5066–5073. doi: 10.1002/adfm.201300614 CrossRefGoogle Scholar
  9. 9.
    Dormann J, Fiorani D, Cherkaoui R, Spinu L, Lucari F, D’Orazio F, Nogués M, Tronc E, Jolivet JP, Garcia A (1999) Collective glass state in a magnetic nanoparticle system. Nanostruct Mater 12:757–762. doi: 10.1016/S0965-9773(99)00231-7 CrossRefGoogle Scholar
  10. 10.
    Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems, vol 98. John Wiley & Sons, Inc., Hoboken. doi: 10.1002/9780470141571.ch4 Google Scholar
  11. 11.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758. doi: 10.1021/nl904286r CrossRefGoogle Scholar
  12. 12.
    Fiorani D, Dormann JL, Cherkaoui R, Tronc E, Lucari F, D’Orazio F, Spinu L, Nogues M, Garcia A, Testa AM (1999) Collective magnetic state in nanoparticles systems. J Magn Magn Mater 196:143–147. doi: 10.1016/S0304-8853(98)00694-5 CrossRefGoogle Scholar
  13. 13.
    Frandsen C, Mørup S (2005) Spin rotation in \(\alpha \)-Fe2O3 nanoparticles by interparticle interactions. Phys Rev Lett 94:027202. doi: 10.1103/PhysRevLett.94.027202 CrossRefGoogle Scholar
  14. 14.
    Garcia-Otero J, Garcia-Bastida AJ, Rivas J (1998) Influence of temperature on the coercive field of non-interacting fine magnetic particles. J Magn Magn Mater 189:377–383. doi: 10.1016/S0304-8853(98)00243-1 CrossRefGoogle Scholar
  15. 15.
    Hiroi K, Komatsu K, Sato T (2011) Superspin glass originating from dipolar interaction with controlled interparticle distance among \(\gamma -\text{ Fe }_{2}O_{3}\) nanoparticles with silica shells. Phys Rev B 83:224423. doi: 10.1103/PhysRevB.83.224423 CrossRefGoogle Scholar
  16. 16.
    Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416. doi: 10.1103/PhysRevB.63.184416 CrossRefGoogle Scholar
  17. 17.
    Jorio A, Dresselhaus G, Dresselhaus M (eds) (2008) Carbon nanotubes, 1st edn, vol 111. Springer, Berlin HeidelbergGoogle Scholar
  18. 18.
    Kim Y, Luzzi DE (2005) Purification of pulsed laser synthesized single wall carbon nanotubes by magnetic filtration. J Phys Chem B 109:16636–16643. doi: 10.1021/jp0522359 CrossRefGoogle Scholar
  19. 19.
    Kim Y, Torrens ON, Kikkawa JM, Abou-Hamad E, Goze-Bac C, Luzzi DE (2007) High-purity diamagnetic single-wall carbon nanotube buckypaper. Chem Mater 19:2982–2986. doi: 10.1021/cm063006h CrossRefGoogle Scholar
  20. 20.
    Knobel M, Nunes WC, Socolovsky LM, de Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857. doi: 10.1166/jnn.2008.017 Google Scholar
  21. 21.
    Kolodiazhnyi T, Pumera M (2008) Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Small 4:1476–1484. doi: 10.1002/smll.200800125 CrossRefGoogle Scholar
  22. 22.
    Liu X, Wang M, Zhang S, Pan B (2013) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci 25:1263–1280. doi: 10.1016/S1001-0742(12)60161-2 CrossRefGoogle Scholar
  23. 23.
    Ma J, Wang JN (2008) Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chem Mater 20:2895–2902. doi: 10.1021/cm8001699 CrossRefGoogle Scholar
  24. 24.
    McNicholas TP, Cantu V, Hilmer AJ, Tvrdy K, Jain R, Han R, Bellisario D, Ahn J, Barone PW, Mu B, Strano MS (2014) Magnetoadsorptive particles enabling the centrifugation-free, preparative-scale separation, and sorting of single-walled carbon nanotubes. Part Part Syst Charact 31:1097–1104. doi: 10.1002/ppsc.201400072 CrossRefGoogle Scholar
  25. 25.
    Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing : an electron microscopy investigation. Carbon 39:1251–1272. doi: 10.1016/S0008-6223(00)00249-9 CrossRefGoogle Scholar
  26. 26.
    Moradian R, Fathalian A (2006) Ferromagnetic semiconductor single-wall carbon nanotubes. Nanotechnology 17:1835–1842. doi: 10.1088/0957-4484/17/8/005 CrossRefGoogle Scholar
  27. 27.
    Mørup S, Hansen MF, Frandsen C (2010) Magnetic interactions between nanoparticles. Beilstein J Nanotechnol 1:182–190. doi: 10.3762/bjnano.1.22 CrossRefGoogle Scholar
  28. 28.
    Mørup S, Brok E, Frandsen C (2013) Spin structures in magnetic nanoparticles. J Nanomater 2013:1–8. doi: 10.1155/2013/720629 CrossRefGoogle Scholar
  29. 29.
    Orellana W, Fuentealba P (2006) Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes. Surf Sci 600:4305–4309. doi: 10.1016/j.susc.2006.01.158 CrossRefGoogle Scholar
  30. 30.
    Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem Eur J 15:7822–7829. doi: 10.1002/chem.200802513 CrossRefGoogle Scholar
  31. 31.
    Pumera M (2012) Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. Chem Rec 12:201–213. doi: 10.1002/tcr.201100027 CrossRefGoogle Scholar
  32. 32.
    Pumera M, Iwai H (2009) Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for “electrocatalytic” effect of carbon nanotubes. Chem Asian J 4:554–560. doi: 10.1002/asia.200800420 CrossRefGoogle Scholar
  33. 33.
    Pumera M, Iwai H (2009) Multicomponent metallic impurities and their influence upon the electrochemistry of carbon nanotubes. J Phys Chem C 113:4401–4405. doi: 10.1021/jp900069e CrossRefGoogle Scholar
  34. 34.
    Pumera M, Miyahara Y (2009) What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Nanoscale 1:260–265. doi: 10.1039/B9NR00071B CrossRefGoogle Scholar
  35. 35.
    van Rijssel J, Kuipers BW, Ern BH (2014) Non-regularized inversion method from light scattering applied to ferrofluid magnetization curves for magnetic size distribution analysis. J Magn Magn Mater 353:110–115. doi: 10.1016/j.jmmm.2013.10.025 CrossRefGoogle Scholar
  36. 36.
    Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodríguez-Macías FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37. doi: 10.1007/s003390050734 CrossRefGoogle Scholar
  37. 37.
    Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550. doi: 10.1080/00018732.2011.582251 CrossRefGoogle Scholar
  38. 38.
    Shanov V, Yun YH, Schulz MJ (2006) Synthesis and characterization of carbon nanotube materials (review). J Univ Chem Technol Metall 41:377–390Google Scholar
  39. 39.
    Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3:3092–3140. doi: 10.3390/ma3053092 CrossRefGoogle Scholar
  40. 40.
    Vaccarini L, Goze C, Aznar R, Micholet V, Journet C, Dernier P (1999) Purification procedure of carbon nanotubes. Synth Met 103:2492–2493. doi: 10.1016/S0379-6779(98)01087-X CrossRefGoogle Scholar
  41. 41.
    Wang Q, Arash B (2014) A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82:350–360. doi: 10.1016/j.commatsci.2013.10.010 CrossRefGoogle Scholar
  42. 42.
    Wu C, Li J, Dong G, Guan L (2009) Removal of ferromagnetic metals for the large-scale purification of single-walled carbon nanotubes. J Phys Chem C 113:3612–3616. doi: 10.1021/jp810163u CrossRefGoogle Scholar
  43. 43.
    Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265. doi: 10.1002/smll.201203252 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Barbara Pacakova
    • 1
  • Zuzana Kominkova
    • 2
    • 3
  • Jana Vejpravova
    • 1
    Email author
  • Alice Mantlikova
    • 1
  • Martin Kalbac
    • 2
  1. 1.Institute of Physics of the ASCRPrague 8Czech Republic
  2. 2.J. Heyrovsky Institute of Physical Chemistry of the ASCRPrague 8Czech Republic
  3. 3.Department of Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations