Journal of Materials Science

, Volume 50, Issue 5, pp 2306–2317 | Cite as

Effects of single- and simultaneous triple-ion-beam irradiation on an oxide dispersion-strengthened Fe12Cr steel

  • Vanessa de CastroEmail author
  • Sergio Lozano-Perez
  • Martha Briceno
  • Patrick Trocellier
  • Steve G. Roberts
  • Ramiro Pareja
Original Paper


Oxide dispersion-strengthened (ODS) steels are main candidates for structural applications in future fusion reactors. Understanding their irradiation-induced behaviour is a key in building optimised components with enhanced radiation resistance. In this work, the stability of an ODS Fe12Cr steel was investigated by transmission electron microscopy after single- (Fe4+) and simultaneous triple-ion-beam irradiation (Fe8+, He+ and H+) at room temperature to doses of 4.4 and 10 dpa. The irradiations were accomplished at the JANNUS-Saclay facility. Results after single-ion-beam irradiation were also compared with those from a reference Fe12Cr steel produced following the same route. Analyses focused on determining the irradiation-induced loop size and density in the ODS and reference materials, investigating the grain boundary microchemistry and studying the evolution of the secondary phases present. These experiments show that the Y-rich nanoparticles present in the ODS steel are quite stable under these irradiation conditions although evolution of larger Cr-rich carbides could be taking place. Loop sizes are smaller for the ODS steel than for the reference material and appear to increase with dose. Cr segregates at some of the grain boundaries, though this segregation also occurs in the absence of irradiation.


Electron Energy Loss Spectroscopy Atom Probe Tomography Loop Size Unirradiated Sample Transmission Electron Microscopy Sample Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This investigation was supported by the Ministerio de Ciencia e Innovación (Contract ENE2010-17462), the European Commission through the European Fusion Development Agreement (EFDA), the EPSRC Grant No. EP/H018921/1, the FP7-EU Program under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative-I3) and the Royal Society International Exchanges Scheme 2011/R1 (ref. IE110136).


  1. 1.
    Boutard JL, Alamo A, Lindau R, Rieth M (2008) Fissile core and tritium-breeding blanket: structural materials and their requirements. C R Phys 9:287–302CrossRefGoogle Scholar
  2. 2.
    Ukai S, Fujiwara M (2002) Perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311:749–757CrossRefGoogle Scholar
  3. 3.
    Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503CrossRefGoogle Scholar
  4. 4.
    Ramar A, Schäublin R (2013) Analysis of hardening limits of oxide dispersion strengthened steel. J Nucl Mater 432:323–333CrossRefGoogle Scholar
  5. 5.
    Schäublin R, Ramar A, Baluc N, de Castro V, Monge MA, Leguey T, Schmid N, Bonjour C (2006) Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater 351:247–260CrossRefGoogle Scholar
  6. 6.
    Kishimoto H, Yutani K, Kasada R, Kimura A (2006) Helium cavity formation research on oxide dispersed strengthening (ODS) ferritic steels utilizing dual-ion irradiation facility. Fus Eng Des 81:1045–1049CrossRefGoogle Scholar
  7. 7.
    Hsiung LL, Fluss MJ, Tumey SJ, Choi BW, Serruys Y, Willaime F, Fimura A (2010) Phys Rev B 82:184103CrossRefGoogle Scholar
  8. 8.
    Ramar A, Baluc N, Schaüblin R (2007) Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic/martensitic steel. J Nucl Mater 367–370:217–221CrossRefGoogle Scholar
  9. 9.
    Robertson C, Panigrahi BK, Balaji S, Kataria S, Serruys Y, Mathon MH, Sundar CS (2012) Particle stability in model ODS steel irradiated up to 100 dpa at 600 C: TEM and nano-indentation investigation. J Nucl Mater 426:240–246CrossRefGoogle Scholar
  10. 10.
    Ukai S (2012) Oxide dispersion strengthened steels. Comp Nucl Mater 4:241–271CrossRefGoogle Scholar
  11. 11.
    Lescoat ML, Ribis J, Gentils A, Kaïtasov O, de Carlan Y, Legris A (2012) In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater 428:176–182CrossRefGoogle Scholar
  12. 12.
    Allen T, Gan J, Cole JI, Miller MK, Busby JT, Shutthanandan S, Thevuthasan S (2008) Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater 375:26–37CrossRefGoogle Scholar
  13. 13.
    Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR (2013) Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321CrossRefGoogle Scholar
  14. 14.
    Akasaka N, Yamashita S, Yoshitake T, Ukai S, Kimura A (2004) Microstructural changes of neutron irradiated ODS ferritic and martensitic steels. J Nucl Mater 329–333:1053–1056CrossRefGoogle Scholar
  15. 15.
    Schaüblin R, Spätig P, Victoria M (1998) Chemical segregation behavior of the low activation ferritic/martensitic steel F82H. J Nucl Mater 258–263:1350–1355CrossRefGoogle Scholar
  16. 16.
    Nastar M, Soisson F (2012) Radiation-induced segregation. Comp Nucl Mater 1:471–496CrossRefGoogle Scholar
  17. 17.
    Lu Z, Faulkner R, Was G, Wirth BD (2008) Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels. Scripta Mater 58:878–881CrossRefGoogle Scholar
  18. 18.
    de Castro V, Leguey T, Muñoz A, Monge MA, Pareja R, Marquis EA, Lozano-Perez S, Jenkins ML (2009) Microstructural characterization of Y2O3 ODS–Fe–Cr model alloys. J Nucl Mater 386–388:449–452CrossRefGoogle Scholar
  19. 19.
    Serruys Y, Trocellier P, Miro S, Bordas E et al (2009) JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J Nucl Mater 386–388:967–970CrossRefGoogle Scholar
  20. 20.
    Pellegrino S, Trocellier P, Miro S, Serruys Y et al (2012) The JANNUS Saclay facility: a new platform for materials irradiation, implantation and ion beam analysis. Nucl Instr Method B 273:213–217CrossRefGoogle Scholar
  21. 21.
    Trocellier P, Miro S, Serruys Y, Vaubaillon S, Pellegrino S, Agarwal S, Moll S, Beck L (2014) Study of helium migration in nuclear materials at Jannus-Saclay. Nucl Instrum Methods Phys Res B 331:55–64CrossRefGoogle Scholar
  22. 22.
    Ziegler J, Biersack J, Littmark U (1993) The stopping and power and range of ions in solids. Pergamon Press, New YorkGoogle Scholar
  23. 23.
    Lozano-Perez S (2008) A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. Micron 39:320–328CrossRefGoogle Scholar
  24. 24.
    Williams DB, Carter CB (2009) High energy-loss spectra and images. Transmission electron microscopy: a textbook for materials science. Springer, Berlin, pp 715–739CrossRefGoogle Scholar
  25. 25.
    Malis T, Cheng SC, Egerton RF (1998) EELS Log-Ratio Technique for Specimen-Thickness Measurement in the TEM. J Electron Microsc Tech 8:193–200CrossRefGoogle Scholar
  26. 26.
    Schaffer B, Grogger W, Kothleitner G (2004) Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102:27–36CrossRefGoogle Scholar
  27. 27.
    Trebbia P, Bonnet N (1990) EELS elemental mapping with unconventional methods I. Theoretical basis. Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34:165–178CrossRefGoogle Scholar
  28. 28.
    Lozano-Perez S, de Castro Bernal V, Nicholls RJ (2009) Achieving sub-nanometre particle mapping with energy-filtered TEM. Ultramicroscopy 109:1217–1228CrossRefGoogle Scholar
  29. 29.
    de Castro V, Marquis EA, Lozano-Perez S, Pareja R, Jenkins ML (2011) Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe–12Cr alloy. Acta Mater 59:3927–3936CrossRefGoogle Scholar
  30. 30.
    Marquis EA, Lozano-Perez S, de Castro V (2011) Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe–12 wt% Cr alloy. J Nucl Mater 417:257–261CrossRefGoogle Scholar
  31. 31.
    de Castro V, Lozano-Perez S, Marquis EA, Auger MA, Leguey T, Pareja R (2011) Analytical characterisation of oxide dispersion strengthened steels for fusion reactors. Mater Sci Tech 27:719–723CrossRefGoogle Scholar
  32. 32.
    Klimiankou M, Lindau R, Möslang A (2005) Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic–martensitic steels. Micron 36:1–8CrossRefGoogle Scholar
  33. 33.
    de Castro V, Briceno M, Lozano-Perez S, Trocellier P, Roberts SG, Pareja R (2014) TEM characterization of simultaneous triple ion implanted ODS Fe12Cr. J Nucl Mater 455:157–161CrossRefGoogle Scholar
  34. 34.
    Jenkins ML, Kirk MA (2001) Analysis of small centres of strain: counting and sizing small clusters. Characterization of radiation damage by transmission electron microscopy. Bristol, Institute of Physics, pp 110–128CrossRefGoogle Scholar
  35. 35.
    de Castro V, Lozano-Perez S, Marquis EA, Jenkins ML (2009) Microstructural characterization of self ion irradiated ODS and Fe-Cr alloys presented at TMS2009 conferenceGoogle Scholar
  36. 36.
    de Castro V, Briceno M, Jenkins ML, Kirk M, Lozano-Perez S, Roberts SG (2014) In-situ Fe+ ion irradiation of an oxide dispersion strengthened steel. J Phys 522:012032Google Scholar
  37. 37.
    Watanabe S, Takamatsu Y, Sakaguchi N, Takahashi H (2000) Sink efect of grain boundary on radiation-induced segregation in austenitic stainless steel. J Nucl Mater 283–287:152–156CrossRefGoogle Scholar
  38. 38.
    Hu R, Smith GDW, Marquis EA (2013) Effect of grain boundary orientation on radiation-induced segregation in a Fe–15.2 at.% Cr alloy. Acta Mater 61:3490–3498CrossRefGoogle Scholar
  39. 39.
    Kawatsura K, Nakae T, Takahashi R, Nakai Y et al (1996) Analysis of radiation-induced segregation in type 304 stainless steel by PIXE and RBS channeling. Nucl Instr and Meth B 118:363–366CrossRefGoogle Scholar
  40. 40.
    Pareige P, Miller MK, Stoller RE, Hoelzer DT, Cadel E, Radiguet B (2007) Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. J Nucl Mater 360:136–142CrossRefGoogle Scholar
  41. 41.
    Kishimoto H, Yutani K, Kasada R, Hashitomi O, Kimura A (2007) Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. J Nucl Mater 367–370:179–184CrossRefGoogle Scholar
  42. 42.
    Yamashita S, Yano Y, Ohtsuka S, Yoshitake T, Kaito T, Koyama S, Tanaka T (2013) Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO. J Nucl Mater 442:417–424CrossRefGoogle Scholar
  43. 43.
    Liu C, Yu C, Hashimoto N, Ohnuki S, Ando M, Shiba K, Jitsukawa S (2011) Micro-structure and micro-hardness of ODS steels after ion irradiation. J Nucl Mater 417:270–273CrossRefGoogle Scholar
  44. 44.
    Bentley J, Hoelzer DT, Busby JT, Certain AG, Allen TR, Kaoumi D, Motta AT, Kirk MA (2009) TEM characterization of crept and irradiated nano-structured ferritic alloys. Microsc Microanal 15(S2):1350CrossRefGoogle Scholar
  45. 45.
    Klueh RL, Harries DR (2001) Interfacial segregation and precipitation during irradiation. High-chromium ferritic and martensitic steels for nuclear applications. ASTM, Bridgeport, pp 103–112CrossRefGoogle Scholar
  46. 46.
    Tanigawa H, Sakasegawa H, Klueh RL (2005) Irradiation effects on precipitation in reduced-activation ferritic/martensitic steels. Mater Trans 46–3:469–474CrossRefGoogle Scholar
  47. 47.
    Jin SX, Guo LP, Yang Z, Fu DJ et al (2011) Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater Charact 62:136–142CrossRefGoogle Scholar
  48. 48.
    Jia X, Dai Y, Victoria M (2002) The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum. J Nucl Mater 305:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vanessa de Castro
    • 1
    Email author
  • Sergio Lozano-Perez
    • 2
  • Martha Briceno
    • 2
    • 4
  • Patrick Trocellier
    • 3
  • Steve G. Roberts
    • 2
    • 5
  • Ramiro Pareja
    • 1
  1. 1.Departamento de FísicaUniversidad Carlos III de MadridLeganésSpain
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK
  3. 3.CEA, DEN, Service de Recherches de Métallurgie PhysiqueLaboratoire JANNUSGif-sur-YvetteFrance
  4. 4.Johnson Matthey Technology CentreSonning CommonUK
  5. 5.Culham Centre for Fusion Energy, Culham Science CentreAbingdonUK

Personalised recommendations