Journal of Materials Science

, Volume 50, Issue 5, pp 2202–2217 | Cite as

On ball-milled ODS ferritic steel recrystallization: From as-milled powder particles to consolidated state

  • Nicolas SallezEmail author
  • Patricia Donnadieu
  • Eglantine Courtois-Manara
  • Delphine Chassaing
  • Christian Kübel
  • Frederic Delabrouille
  • Martine Blat-Yrieix
  • Yann de Carlan
  • Yves Bréchet
Original Paper


Recrystallization of a ball-milled ferritic ODS steel is studied towards its evolution from as-milled powder to consolidated state. This characterization has been made possible by using a combination of X-ray Diffraction (XRD) and an innovative method based on an Automated Crystallographic Orientation Mapping (ACOM) tool attached to a Transmission Electron Microscope (TEM). Focus Ion Beam preparation has been essential to obtain a thin section of the ODS steel powder particle and perform the ACOM-TEM study. Relevant temperatures regarding recovery and recrystallization during the heat treatment had first been identified with XRD profile analysis. Selected states were further characterized using ACOM-TEM that provides key information on microstructure, i.e. grain size and morphology, crystallite size, local texture and distortion. ACOM-TEM cartographies have revealed for the first time that the microstructure of as-milled ODS ferritic steel particles consists in very anisotropic grains containing undistorted domains and dislocation walls. This is in agreement with the nanosized crystallites measured by XRD results. The mutual benefits of XRD and ACOM-TEM methods to analyse and describe the microstructure are discussed as well as the reliability of dislocation density measurements provided by ACOM-TEM misorientation measurements. In addition, of the ACOM-TEM results, the microstructural evolution during the processing route is interpreted in terms of a competition between recovery, recrystallization, grain growth and precipitation.


Dislocation Density Powder Particle Consolidate State Consolidate Sample Local Misorientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the joint program “CPR ODISSEE” funded by AREVA, CEA, CNRS, EDF and Mécachrome under contract no 070551. It was carried out with the support of the Karlsruhe Nano Micro Facility (KNMF,, a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, Authors also gratefully acknowledge Muriel Véron and Edgar Rauch for their support in ACOM-TEM data interpretation.

Supplementary material

10853_2014_8783_MOESM1_ESM.tif (4.1 mb)
Supplementary material 1 (TIFF 4197 kb)

Supplementary material 2 (MPG 2520 kb)


  1. 1.
    Dubuisson P, de Carlan Y, Garat V, Blat M (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428:6–12CrossRefGoogle Scholar
  2. 2.
    de Carlan Y, Bechade J-L, Dubuisson P, Seran J-L, Billot P, Bougault A et al (2009) CEA developments of new ferritic ODS alloys for nuclear applications. J Nucl Mater 386–388:430–432CrossRefGoogle Scholar
  3. 3.
    Ukai S, Nishida T, Okada H, Okuda T, Fujiwara et M, Asabe K (1997) Development od oxide dispersion strengthened ferritic steels for FBR core application, (I). recrystallization processing. J Nucl Sci Technol 34:256–263CrossRefGoogle Scholar
  4. 4.
    Nikitina AA, Ageev VS, Chukanov AP, Tsvelev VV, Porezanov NP, Kruglov OA (2012) R&D on ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors. J Nucl Mater 428:117–124CrossRefGoogle Scholar
  5. 5.
    Kasada R, Lee SG, Isselin J, Lee JH, Omura T, Kimura A, Okuda T et al (2011) Anisotropy in tensile and ductile–brittle transition behaviour of ODS ferritic steels. J Nucl Mater 417:180–184CrossRefGoogle Scholar
  6. 6.
    Fournier B, Steckmeyer A, Rouffie A-L, Malaplate J, Garnier J, Ratti M et al (2012) Mechanical behaviour of ferritic ODS steels:temperature dependency and anisotropy. J Nucl Mater 430:142–149CrossRefGoogle Scholar
  7. 7.
    Bréchet et Y, Militzer M (2005) A note on grain size dependent pinning. Scr Mater 52:1299–1303CrossRefGoogle Scholar
  8. 8.
    Alinger MJ, Odette GR, Hoelzer DT (2009) On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostructured ferritic alloys. Acta Mater 57:392–406CrossRefGoogle Scholar
  9. 9.
    Dai L, Liu Y, Ma Z, Dong Z, Yu L (2013) Microstructural evolution of oxide-dispersion-strengthened Fe–Cr model steels during mechanical milling and subsequent hot pressing. J Mater Sci 48:1826–1836. doi: 10.1007/s10853-012-6948-3 CrossRefGoogle Scholar
  10. 10.
    Oksiuta Z, Kozikowski P, Lewandowska M, Ohnuma M, Suresh K, Kurzydlowski KJ (2013) Microstructural changes of Ods ferritic steel powders during mechanical alloying. J Mater Sci 48:4620–4625CrossRefGoogle Scholar
  11. 11.
    Reglé H (1994) Oxide dispersion strengthened ferritic alloys, fourteen and twenty percent Chromium: effects of hot and cold working processes on deformation textures, recrystallisation and tensile properties. PhD Dissertation, Université de Paris 11Google Scholar
  12. 12.
    Rahmanifard R, Farhangi H, Novinrooz AJ (2010) Investigation of microstructural characteristics of nanocrystalline 12YWT steel during milling and subsequent annealing by X-ray diffraction line profile analysis. J Mater Sci 45:6498–6504. doi: 10.1007/s10853-010-4738-3 CrossRefGoogle Scholar
  13. 13.
    Rauch et EF, Véron M (2005) Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a TEM. Materialwiss Werkstofftech 36:552–556CrossRefGoogle Scholar
  14. 14.
    Louise T, Patrick O, Elodie R, de Carlan Y (2013) On the influence of cold-rolling parameters for 14CrW-ODS ferritic steels claddings. Key Eng Mater 554–557:118–126CrossRefGoogle Scholar
  15. 15.
    Brocq M, Radiguet B, Poissonnet S, Cuvilly F, Pareige P, Legrendre F (2011) Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing. J Nucl Mater 409:80–85CrossRefGoogle Scholar
  16. 16.
    Ungár T, Borbély A (1996) The effect of dislocation contrast on X-Ray line broadening: a new approach to line profile analysis. J Appl Phys Lett 69:3173–3175CrossRefGoogle Scholar
  17. 17.
    Leoni M, Confente T, Scardi P (2006) PM2K: a flexible program implementing whole powder pattern modelling. Z Kristallographie Suppl 23:249–254CrossRefGoogle Scholar
  18. 18.
    Jacob KT, Raj S, Rannesh L (2007) Vegard’s law: a fundamental relation or an approximation? Int J Mater Res 9:776–779CrossRefGoogle Scholar
  19. 19.
    Oksiuta Z (2011) Microstructural changes of ODS ferritic steel powders during mechanical alloying. Acta Mech Autom 5:74–78Google Scholar
  20. 20.
    Pandey A, Palneedi H, Jayasankar K, Parida P, Debata M, Mishra BKB, Saroja S (2013) Microstructural characterization of oxide dispersion strengthened ferritic steel powder. J Nucl Mater 437:29–36CrossRefGoogle Scholar
  21. 21.
    Renzetti RA, Sandim HRZ, Bolmaro RE, Suzuki PA, Möslang A (2012) X-ray evaluation of dislocation density on ODS-Eurofer steel. Mater Sci Eng A 534:142–146CrossRefGoogle Scholar
  22. 22.
    Rauch et EF, Dupuy L (2005) Rapid spot diffraction patterns identification through template matching RID C-9852-2011. Arch Metall Mater 50:87–99Google Scholar
  23. 23.
    Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746CrossRefGoogle Scholar
  24. 24.
    Unifantowicz P, Oksiuta Z, Olier P, de Carlan Y, Baluc N (2011) Microstructure and mechanical properties of an ODS RAF steel fabricated by hot extrusion or hot isostatic pressing. Fusion Eng Des 86(9–11):2413–2416CrossRefGoogle Scholar
  25. 25.
    Humphreys FJ, Hatherly M (2004) Recrystallization and Related Annealing Phenomena, 2nd edn. Elsevier Press, OxfordGoogle Scholar
  26. 26.
    Cayron C, Rath E, Chu I, Launois S (2004) Microstructural evolution of Y2O3 and MgAl2O4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing. J Nucl Mater 335:83–102CrossRefGoogle Scholar
  27. 27.
    Alinger MJ, Wirth BD, Lee H-J, Odette GR (2007) Lattice Monte Carlo simulations of nanocluster formation in nanostructured ferritic alloys. J Nucl Mater 367–370(2007):153–159CrossRefGoogle Scholar
  28. 28.
    Williams CA, Unifantowicz P, Baluc N, Smith GDW, Marquis EA (2013) The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing. Acta Mater 61:2219–2235CrossRefGoogle Scholar
  29. 29.
    Hin C, Wirth BD (2011) Formation of oxide nanoclusters in nanostructured ferritic alloys during anisothermal heat treatment: A kinetic Monte Carlo study. Mater Sci Eng A 528:2056–2061CrossRefGoogle Scholar
  30. 30.
    Hernández-Rivera JL, Cruz Rivera JJ, Koch CT, Özdöl VB, Martínez-Sánchez R (2012) Study of coherence strain of GP II zones in an aged aluminium composite. J Alloy Compd 536:159–164CrossRefGoogle Scholar
  31. 31.
    Brandes MC, Kovarik L, Miller MK, Mills MJ (2012) Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel. J Mater Sci 47:3913–3923. doi: 10.1007/s10853-012-6249-x CrossRefGoogle Scholar
  32. 32.
    Boulnat X, Perez M, Fabregue D, Douillard T, Mathon MH, de Carlan Y (2014) High-temperature tensile properties of nano-oxide dispersion strengthened ferritic steels produced by mechanical alloying and spark plasma sintering. Metall Mater Trans A 53:1485–1497CrossRefGoogle Scholar
  33. 33.
    Lohmiller J, Grewer M, Braun C, Kobler A, Kübel C, Schüler K et al (2013) Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel. Acta Mater 65:295–307CrossRefGoogle Scholar
  34. 34.
    Hansen N, Huang X (1998) Microstructure and flow stress of polycrystals and single crystals. Acta Mater 46:1827–1836CrossRefGoogle Scholar
  35. 35.
    Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51:4847–4862CrossRefGoogle Scholar
  36. 36.
    Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity: I. Theory. J Mech Phys Solids 47:1239–1269CrossRefGoogle Scholar
  37. 37.
    Demir E, Raabe D, Zaafarani N, Zaefferer S (2009) Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater 57:559–569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nicolas Sallez
    • 1
    • 2
    Email author
  • Patricia Donnadieu
    • 1
    • 2
  • Eglantine Courtois-Manara
    • 3
  • Delphine Chassaing
    • 3
  • Christian Kübel
    • 3
  • Frederic Delabrouille
    • 4
  • Martine Blat-Yrieix
    • 4
  • Yann de Carlan
    • 5
  • Yves Bréchet
    • 1
    • 2
  1. 1.Université Grenoble Alpes, SIMAPGrenobleFrance
  2. 2.CNRS, SIMAPGrenobleFrance
  3. 3.Karlsruhe Nano Micro Facility & Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  4. 4.EDF – EDF R&D, Les RenardièresMoret-sur-LoingFrance
  5. 5.CEA, DEN, Service de Recherches Métallurgiques AppliquéesGif-sur-YvetteFrance

Personalised recommendations