Advertisement

Journal of Materials Science

, Volume 50, Issue 5, pp 2061–2072 | Cite as

Creep behaviour of single hemp fibres. Part II: Influence of loading level, moisture content and moisture variation

  • Violaine Guicheret-Retel
  • Ousseynou Cisse
  • Vincent Placet
  • Johnny Beaugrand
  • Miguel Pernes
  • M. Lamine Boubakar
Original Paper

Abstract

This work investigates the tensile creep behaviour of single hemp fibres under constant and cyclic loading coupled to constant or variable moisture content environment. Results show that the primary creep strain rate of such fibres decreases with the increasing stress, while the secondary creep strain rate increases. Load cycling at an average load higher than constant creep load produces a large additional extra creep strain and an increase of the creep rate. Both primary and secondary creep strain rates increase with the increasing moisture content. More creep is also observed in cyclic humidity conditions than in a constant environment at the high-humidity. In agreement with some observations on synthetic fibres, we showed that this accelerated creep is only observed for high moisture cycling rates. This mechanosorptive effect is consistent with sorption-induced stress-gradient explanations proposed in literature.

Keywords

Creep Rate Creep Strain Creep Behaviour Creep Strain Rate Stress Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Camille Garcin and Jean-Marc Côte from the FEMTO-ST Institute for their assistance with some of the experiments.

References

  1. 1.
    Placet V, Cisse O, Boubakar L (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Composites A Appl Sci Manuf 56:319–327CrossRefGoogle Scholar
  2. 2.
    Placet V, Cisse O, Boubakar ML (2012) Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J Mater Sci 47(7):3435–3446. doi: 10.1007/s10853-011-6191-3 CrossRefGoogle Scholar
  3. 3.
    Navi P, Stanzl-Tschegg S (2008) Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung 63(2):186–195Google Scholar
  4. 4.
    Sedlachek K, Ellis R (1994) The effect of cyclic humidity on the creep of single fibers of Southern pine. In: Fellers C LT, (ed) Moisture-induced creep behaviour of paper and board. STFI, USDA, Stockholm, p 22Google Scholar
  5. 5.
    Sedlachek K (1995) The effect of hemicelluloses and cyclic humidity on the creep of single fibres. Institute of Paper Science and Technology: Georgia TechGoogle Scholar
  6. 6.
    Coffin D, Boese S (1997) Tensile creep behavior of single fibers and paper in a cyclic humidity environment. In: 3rd international symposium on moisture and creep effects on paper and containers. Rotorua, New-ZealandGoogle Scholar
  7. 7.
    Haberger C, Coffin D, Hojjatie B (2001) Influence of humidity cycling parameters on the moisture-accelerated creep of polymeric fibers. J Polym Sci Pol Phys 39:2048–2062CrossRefGoogle Scholar
  8. 8.
    Dong F, Olsson A-M, Salmén L (2010) Fibre morphological effects on mechano-sorptive creep. Wood Sci Technol 44(3):475–483CrossRefGoogle Scholar
  9. 9.
    Olsson A-M, Salmén L, Eder M, Burgert I (2007) Mechano-sorptive creep in wood fibres. Wood Sci Technol 41(1):59–67CrossRefGoogle Scholar
  10. 10.
    Olsson A-M, Salmén L (2014) Mechano-sorptive creep in pulp fibres and paper. Wood Sci Technol 48(3):569–580CrossRefGoogle Scholar
  11. 11.
    Haberger C, Coffin D (2000) The role of stress concentrations in accelerated creep and sorption-induced physical aging. J Pulp Pap Sci 26(4):145–157Google Scholar
  12. 12.
    Lindström S, Karabulut E, Kulachenko A, Sehaqui H, Wagberg L (2012) Mechanosorptive creep in nanocellulose materials. Cellulose 19(3):809–819CrossRefGoogle Scholar
  13. 13.
    Beaugrand J, Nottez M, Konnerth J, Bourmaud A (2014) Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location. Ind Crops Prod 60:193–204CrossRefGoogle Scholar
  14. 14.
    Shah D (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48(18):6083–6107. doi: 10.1007/s10853-013-7458-7 CrossRefGoogle Scholar
  15. 15.
    Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1—Fibres as reinforcements. Compos A Appl Sci Manuf 41(10):1329–1335CrossRefGoogle Scholar
  16. 16.
    Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112(3):1524–1537CrossRefGoogle Scholar
  17. 17.
    Bessadok A, Langevin D, Gouanvé F, Chappey C, Roudesli S, Marais S (2009) Study of water sorption on modified Agave fibres. Carbohydr Polym 76(1):74–85CrossRefGoogle Scholar
  18. 18.
    Bertinetti L, Fischer FD, Fratzl P (2013) Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues. Phys Rev Lett 111(23):238001CrossRefGoogle Scholar
  19. 19.
    Trivaudey F, Placet V, Guicheret-Retel V, Boubakar L (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part II: Modelling using an anisotropic viscoelastic constitutive law in a material rotating frame. Composites A: Appl Sci Manuf (in press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Violaine Guicheret-Retel
    • 1
  • Ousseynou Cisse
    • 1
  • Vincent Placet
    • 1
  • Johnny Beaugrand
    • 2
    • 3
  • Miguel Pernes
    • 2
    • 3
  • M. Lamine Boubakar
    • 1
  1. 1.Department of Applied Mechanics, FEMTO-ST InstituteUMR CNRS 6174, University of Franche-ComtéBesançonFrance
  2. 2.INRA, UMR 614 Fractionnement des AgroRessources et EnvironnementReimsFrance
  3. 3.Université de Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources et EnvironnementReimsFrance

Personalised recommendations