Advertisement

Journal of Materials Science

, Volume 50, Issue 4, pp 1996–2006 | Cite as

Creep behaviour of single hemp fibres. Part I: viscoelastic properties and their scattering under constant climate

  • Ousseynou Cisse
  • Vincent Placet
  • Violaine Guicheret-Retel
  • Frédérique Trivaudey
  • M. Lamine Boubakar
Original Paper

Abstract

The literature on the time-dependent behaviour of single bast fibres such as flax and hemp is extremely poor. The aim of this extensive study is to characterise the long-term behaviour of elementary hemp fibres and to establish suitable constitutive laws. Single hemp fibres are shown to exhibit both instantaneous strain and delayed, time-dependent strain when tensile loaded under constant climate. The creep behaviour appears to be a logarithmic function of time with a high strain rate during the primary creep and a lower and constant one during the secondary creep. A large scattering both in time-dependent properties and behaviour was observed on a batch of 25 single fibres. Three main creep behaviours were observed. Type II is truly linear as a function of the logarithm of time while Type I and Type III are strongly nonlinear and can be described, respectively, by concave and convex functions. A rheological model based on an anisotropic viscoelastic law and on a truncated inverse Gaussian spectrum of viscous mechanisms was shown to successfully describe all the experimentally observed behaviours.

Keywords

Creep Behaviour Hemp Natural Fibre Creep Curve Primary Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Camille Garcin and Jean-Marc Côte from the FEMTO-ST Institute for their assistance with some of the experiments.

References

  1. 1.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33(7):939CrossRefGoogle Scholar
  2. 2.
    FdA Silva, Chawla N, Filho RDdT (2008) Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 68:3438CrossRefGoogle Scholar
  3. 3.
    Placet V (2009) Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos A Appl Sci Manuf 40(8):1111CrossRefGoogle Scholar
  4. 4.
    Placet V, Cisse O, Boubakar ML (2012) Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J Mater Sci 47(7):3435. doi: 10.1007/s10853-011-6191-3 CrossRefGoogle Scholar
  5. 5.
    Nilsson T, Gustafsson PJ (2007) Influence of dislocations and plasticity on the tensile behaviour of flax and hemp fibres. Compos A Appl Sci Manuf 38(7):1722CrossRefGoogle Scholar
  6. 6.
    Virk AS, Hall W, Summerscales J (2010) Failure strain as the key design criterion for fracture of natural fibre composites. Compos Sci Technol 70(6):995CrossRefGoogle Scholar
  7. 7.
    Nilsson T (2006) Micromechanical modelling of natural fibres for composite materials. PhD thesis, LundGoogle Scholar
  8. 8.
    Shah D (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48(18):6083. doi: 10.1007/s10853-013-7458-7 CrossRefGoogle Scholar
  9. 9.
    Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos A Appl Sci Manuf 41(10):1329CrossRefGoogle Scholar
  10. 10.
    Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites. Part 2—composites. Compos A Appl Sci Manuf 41(10):1336CrossRefGoogle Scholar
  11. 11.
    Summerscales J, Virk A, Hall W (2013) A review of bast fibres and their composites: part 3—modelling. Compos A Appl Sci Manuf 44:132CrossRefGoogle Scholar
  12. 12.
    Gassan J, Bledzki AK (1999) Influence of fiber surface treatment on the creep behavior of jute fiber-reinforced polypropylene. J Thermoplast Compos Mater 12(5):388CrossRefGoogle Scholar
  13. 13.
    Scott DW, Lai JS, Zureick AH (1995) Creep behavior of fiber-reinforced polymeric composites: a review of the technical literature. J Reinf Plast Compos 14(6):588Google Scholar
  14. 14.
    Takemura K (2004) Effect of water absorption on static and creep properties for jute fiber reinforced composite. WIT Transactions on the Built Environment/High Performance Structures and Materials II:7Google Scholar
  15. 15.
    Takemura K (2006) Effect of surface treatment to tensile static and creep properties for jute fiber reinforced composite. WIT Transactions on the Built Environment/High Performance Structures and Materials III: 7Google Scholar
  16. 16.
    Takemura K, Miyamoto S, Katogi H (2013) Effect of surface treatment on creep property of jute fiber reinforced green composite under environmental temperature. Key Eng Mater 525:53Google Scholar
  17. 17.
    Yu Y, Jiang Z, Fei B, Wang G, Wang H (2011) An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers. J Mater Sci 46(3):739. doi: 10.1007/s10853-010-4806-8 CrossRefGoogle Scholar
  18. 18.
    Navi P, Stanzl-Tschegg S (2008) Micromechanics of creep and relaxation of wood. a review COST Action E35 2004–2008: wood machining–micromechanics and fracture. Holzforschung 63(2):186Google Scholar
  19. 19.
    Holzer S, JR L, Dillard D (1989) A review of creep in wood : concepts relevant to develop long-term behavior predictions for wood structures. Wood Fiber Sci 21(4):376Google Scholar
  20. 20.
    Ansell M (2011) Wood—a 45th anniversary review of JMS papers. Part 1: the wood cell wall and mechanical properties. J Mater Sci 46(23):7357. doi: 10.1007/s10853-011-5856-2 CrossRefGoogle Scholar
  21. 21.
    Haslach H Jr (2000) The moisture and rate-dependent mechanical properties of paper: a review. Mech Time-Depend Mater 4(3):169CrossRefGoogle Scholar
  22. 22.
    Sedlachek K, Ellis R (1994) The effect of cyclic humidity on the creep of single fibers of Southern pine. In: Fellers C LT, ed. Moisture-induced creep behaviour of paper and board. Stockholm: STFI, USDA, 1994:22Google Scholar
  23. 23.
    Sedlachek K (1995) The effect of hemicelluloses and cyclic humidity on the creep of single fibres. Georgia Tech, Inst Paper Sci TechnolGoogle Scholar
  24. 24.
    Coffin D, Boese S (1997) Tensile creep behavior of single fibers and paper in a cyclic humidity environment. 3rd Int. Symp. On Moisture and Creep effects on paper and containers. Rotorua, New-ZealandGoogle Scholar
  25. 25.
    Haberger C, Coffin D, Hojjatie B (2001) Influence of humidity cycling parameters on the moisture-accelerated creep of polymeric fibers. J Polym Sci Pol Phys 39:2048CrossRefGoogle Scholar
  26. 26.
    Olsson A-M, Salmén L, Eder M, Burgert I (2007) Mechano-sorptive creep in wood fibres. Wood Sci Technol 41(1):59CrossRefGoogle Scholar
  27. 27.
    Dong F, Olsson A-M, Salmén L (2010) Fibre morphological effects on mechano-sorptive creep. Wood Sci Technol 44(3):475CrossRefGoogle Scholar
  28. 28.
    Placet V (2010) Tensile behaviour of natural fibres. Effect of loading rate, temperature and humidity on the “accommodation” phenomena. International Conference on Experimental Mechanics. PoitiersGoogle Scholar
  29. 29.
    Virk A, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864CrossRefGoogle Scholar
  30. 30.
    Bardet S (2001) Comportement thermoviscoélastique transverse du bois humide. PhD thesis, Montpellier II, FranceGoogle Scholar
  31. 31.
    Boubakar ML, Vang L, Trivaudey F, Perreux D (2003) A meso-macro finite element modelling of laminate structures: part II: time-dependent behaviour. Compos Struct 60(3):275CrossRefGoogle Scholar
  32. 32.
    Trivaudey F, Placet V, Guicheret-Retel V, Boubakar L (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part II: Modelling using an anisotropic viscoelastic constitutive law in a material rotating frame. Composites Part A, In PressGoogle Scholar
  33. 33.
    Carbillet S (2005) Contribution aux calculs fiabilistes sur des structures composites. PhD thesis, University Franche-ComtéGoogle Scholar
  34. 34.
    Richard F (1999) Identification du comportement et évaluation de la fiabilité des composites stratifiés. PhD thesis, University Franche-ComtéGoogle Scholar
  35. 35.
    Carbillet S, Guicheret-Retel V, Trivaudey F, Richard F, Boubakar L (2014) Identification of highly non-linear behavior models with restricted or redundant data. Inf Sci (in press)Google Scholar
  36. 36.
    Placet V, Cisse O, Boubakar L (2014) Nonlinear tensile behaviour of elementary hemp fibres. Part I: investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos A Appl Sci Manuf 56:319CrossRefGoogle Scholar
  37. 37.
    Keckes J, Burgert I, Fruhmann K et al (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2(12):810CrossRefGoogle Scholar
  38. 38.
    Duval A, Bourmaud A, Augier L, Baley C (2011) Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Mater Lett 65(4):797CrossRefGoogle Scholar
  39. 39.
    Marrot L, Lefeuvre A, Pontoire B, Bourmaud A, Baley C (2013) Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Ind Crops Prod 51:317CrossRefGoogle Scholar
  40. 40.
    Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A Appl Sci Manuf 39(6):979CrossRefGoogle Scholar
  41. 41.
    Placet V, Méteau J, Froehly L, Salut R, Boubakar ML (2014) Investigation of the internal structure of hemp fibres using optical coherence tomography and Focused Ion Beam transverse cutting. J Mater Sci 49(24):8317. doi:  10.1007/s10853-014-8540-5 CrossRefGoogle Scholar
  42. 42.
    Bardet S, Gril J (2002) Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements. Comptes Rendus Mécanique 330(8):549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ousseynou Cisse
    • 1
  • Vincent Placet
    • 1
  • Violaine Guicheret-Retel
    • 1
  • Frédérique Trivaudey
    • 1
  • M. Lamine Boubakar
    • 1
  1. 1.Department of Applied Mechanics, FEMTO-ST InstituteUMR CNRS 6174, University of Franche-ComtéBesançonFrance

Personalised recommendations