Journal of Materials Science

, Volume 50, Issue 4, pp 1973–1985 | Cite as

Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects

  • Zdenka BujňákováEmail author
  • Peter Baláž
  • Petre Makreski
  • Gligor Jovanovski
  • Mária Čaplovičová
  • Ľubomír Čaplovič
  • Oleh Shpotyuk
  • Adam Ingram
  • Te-Chang Lee
  • Jing-Jy Cheng
  • Ján Sedlák
  • Erika Turianicová
  • Anna Zorkovská
Original Paper


In this paper, nanosuspensions of three arsenic sulfide (As4S4) compounds, commercial synthetic arsenic(II) sulfide, and natural realgar and pararealgar minerals were prepared. Nanosuspensions were obtained by ultrafine wet milling in a circulation mill. The zeta potential and particle size distribution were measured for stability estimation. Structural changes were studied using Raman and Fourier transform infrared spectroscopic methods and positron annihilation lifetime method. The morphology of the prepared nanoparticles was determined using scanning and transmission electron microscopy. The anticancer effects were tested using flow cytometry and western blotting analysis. The average particle size in the individual samples varied from 137 to 153 nm. The effects of milling were associated with the formation of arsenic sulfide crystalline nanoparticles and the fragmentation of the corresponding free-volume entities. Consequently, an increase in the arsenic dissolution was observed. The anti-cancer effects of the nanosuspensions were verified on the human cancer H460 cell line, in which case DNA damage and greater numbers of apoptotic cells were observed.


Arsenic H460 Cell Simulated Gastric Fluid Positron Lifetime Simulated Intestinal Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Agency for Science and Development (projects LPP-0107-09, APVV-0189-10), the Slovak Grant Agency (projects VEGA 2/0027/14, 2/0064/14), the Slovak-Taiwan project SAS-NSC JRP 2010/03, and the European Regional Development Fund (ITMS:26220120048). PM acknowledges for financial support from Ministry of Education and Science of R. Macedonia. TCL acknowledges Dr. Pinping Lin, National Research Institutes of Health, Miaoli, Taiwan, for ICP-MS measurements.


  1. 1.
    Ito T, Morimoto N, Sadanaga R (1952) The crystal structure of realgar. Acta Crystallogr 5:775–782CrossRefGoogle Scholar
  2. 2.
    Street GB, Munir ZA (1970) The structure and thermal properties of synthetic realgar (As4S4). J Inorg Nucl Chem 32:3769–3774CrossRefGoogle Scholar
  3. 3.
    Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulphides: a new product with an orthorhombic crystal structure. Am Miner 92:617–620CrossRefGoogle Scholar
  4. 4.
    Bullen HA, Dorko MJ, Oman JK, Garrett SJ (2003) Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf Sci 531:319–328CrossRefGoogle Scholar
  5. 5.
    Wu J-Z, Ho PC (2006) Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci 29:35–44CrossRefGoogle Scholar
  6. 6.
    Ye HQ, Gan L, Yang X-L, Xu H-B (2006) Membrane-associated cytotoxicity induced by realgar in promyelocytic leukemia HL-60 cells. J Ethnopharmacol 103:366–371CrossRefGoogle Scholar
  7. 7.
    Baláž P, Fabián M, Pastorek M, Cholujová D, Sedlák J (2009) Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett 63:1542–1544CrossRefGoogle Scholar
  8. 8.
    Baláž P, Sedlák J (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (A minireview). Toxins 2:1568–1581CrossRefGoogle Scholar
  9. 9.
    Wu J, Shao Y, Liu J, Chen G, Ho PC (2011) The medical use of realgar (As4S4) and its recent development as an anticancer agentm. J Ethnopharmacol 135:595–602CrossRefGoogle Scholar
  10. 10.
    Baláž P, Sedlák J, Pastorek M, Cholujová D, Vignarooban K, Bhosle S, Boolchand P, Bujňáková Z, Dutková E, Kartachova O, Stalder B (2012) Arsenic sulphide As4S4 nanoparticles: physico-chemical properties and anti-cancer effects. J Nano R 18–19:149–155Google Scholar
  11. 11.
    Jakubíková J, Hideshima T, Groen RWJ, Cholujová D, Bujňáková Z, Laubach JP, Munshi NC, Richardson PG, Mitsiades CS, Baláž P, Sedlák J, Anderson KC (2013) Nanoparticle arsenic compound realgar effectively targets myeloma stem-like side population. Blood 122:4455Google Scholar
  12. 12.
    Yuan L, Wang C, Liu W, Gou B, Zhang T (2013) Realgar induces differentiation through ROS-dependent mitochondrial pathway in HL-60 cells. J Chinese Pharm Sci 22:184–189CrossRefGoogle Scholar
  13. 13.
    Tian Y, Wang X, Xi R, Pan W, Jiang S, Li Z, Zhao Y, Gao G, Liu D (2014) Enhanced antitumor activity of realgar mediated by milling to nanosize. Int J Nanomed 9:745–757Google Scholar
  14. 14.
    Junghanns JU, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3:295–309Google Scholar
  15. 15.
    Liu P, Rong X, Laru J, van Ven B, Kiesvaara J, Hirvonen J, Laaksonen T, Peltonen L (2011) Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm 411:215–222CrossRefGoogle Scholar
  16. 16.
    Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliver Rev 63:427–440CrossRefGoogle Scholar
  17. 17.
    Baláž P, Bujňáková Z, Kartachova O, Fabián M, Stalder B (2013) Properties and bioaccesibility of arsenic sulphide nanosuspensions. Mater Lett 104:84–86CrossRefGoogle Scholar
  18. 18.
    Brough C, Williams RO 3rd (2013) Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 453:157–166CrossRefGoogle Scholar
  19. 19.
    Möschwitzer JP (2013) Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 453:142–156CrossRefGoogle Scholar
  20. 20.
    Mishra PR, Shaal LA, Müller RH, Keck CM (2009) Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189CrossRefGoogle Scholar
  21. 21.
    Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469CrossRefGoogle Scholar
  22. 22.
    Baláž P, Nguyen AV, Fabián M, Cholujová D, Pastorek M, Sedlák J, Bujňáková Z (2011) Properties of arsenic sulfide As4S4 nanoparticles prepared by high-energy milling. Powder Technol 2–3:232–236Google Scholar
  23. 23.
    Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H (2011) Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol 102:3260–3267CrossRefGoogle Scholar
  24. 24.
    Zhang J, Zhang X, Ni Y, Yang X, Li H (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem 42:1265–1271CrossRefGoogle Scholar
  25. 25.
    Zhang J, Zhang B, Wang X, Pang RJ, Li H (2008) Enhancement of a bioleaching solution for dissolution rate and bioavailability of medical realgar, a poorly water-soluble arsenical compound (As2S2), by bacteria. J Biotechnol 136:S499CrossRefGoogle Scholar
  26. 26.
    Stafilov T, Angelov N, Jaćimović R, Stibilj V (2005) Determination of trace elements in arsenic and antimony minerals by atomic absorption spectrometry and k0-instrumental neutron activation analysis after As and Sb removal. Microchim Acta 149:229–237CrossRefGoogle Scholar
  27. 27.
    Shpotyuk O, Filipecki J (2003) Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study. Publishing House WSP, Czestochowa, p 185Google Scholar
  28. 28.
    Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spactra. Nucl Instrum Methods A 374:235–244CrossRefGoogle Scholar
  29. 29.
    Krause-Rehberg K, Leipner HS (1999) Positron annihilation in semiconductors. Defect studies. Springer, Berlin, p 394CrossRefGoogle Scholar
  30. 30.
    Hörter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 46:75–87CrossRefGoogle Scholar
  31. 31.
    Wu JP, Chang LW, Yao HT, Chang H, Tsai HT, Tsai MH, Yeh TK, Lin PP (2009) Involvement of oxidative stress and activation of aryl hydrocarbon receptor in elevation of CYP1A1 expression and activity in lung cells and tissues by arsenic: an in vitro and in vivo study. Toxicol Sci 107:385–393CrossRefGoogle Scholar
  32. 32.
    Naumov P, Makreski P, Jovanovski G (2007) Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg Chem 46:10624–10631CrossRefGoogle Scholar
  33. 33.
    Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) Visualization of a discrete solid-state process with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. JACS 132:11398–11401CrossRefGoogle Scholar
  34. 34.
    Douglass DL, Shing C, Wang G (1992) The light-induced alteration of realgar to pararealgar. Am Miner 77:1266–1274Google Scholar
  35. 35.
    Trentelman K, Stodulski L, Pavlovski M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman spectroscopy. Anal Chem 68:1755–1761CrossRefGoogle Scholar
  36. 36.
    Baláž P, Choi WS, Dutková E (2007) Mechanochemical modification of properties and reactivity of nanosized arsenic sulphide As4S4. J Phys Chem Solids 68:1178–1183CrossRefGoogle Scholar
  37. 37.
    Bonazzi P, Bindi L, Muniz-Miranda M, Chelazzi L, Rödl T, Pfitzner A (2011) Light-induced molecular change in HgI2.As4S4: evidence by single-crystal X-ray diffraction and Raman spectroscopy. Am Miner 96:646–653CrossRefGoogle Scholar
  38. 38.
    Wang XH, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453CrossRefGoogle Scholar
  39. 39.
    Klym H, Ingram A, Shpotyuk O, Filipecki J, Hadzaman I (2007) Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Phys Status Solidi C 4:715–718CrossRefGoogle Scholar
  40. 40.
    Golovchak R, Ingram A, Kozyukhin S, Shpotyuk O (2013) Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. J Non Cryst Solids 377:49–53CrossRefGoogle Scholar
  41. 41.
    Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting. Wissenschaftliche Verlagsgesellschaft mbH, CRC Press, Stuttgart, BostonGoogle Scholar
  42. 42.
    Zhang Y-N, Sun G-X, Williams PN, Huang Q, Zhu Y-G (2011) Assessment of the solubility and bioaccessibility of arsenic in realgar wine using a simulated gastrointestinal system. Sci Total Environ 409:2357–2360CrossRefGoogle Scholar
  43. 43.
    Kwan SY, Tsui SK, Man TO (2011) Release of soluble arsenic from realgar in simulated gastric juice. Anal Lett 34:1431–1436CrossRefGoogle Scholar
  44. 44.
    Wu XH, Sun DH, Zhuang ZX, Wang XR, Gong HF, Hong JX, Lee FSC (2002) Analysis and leaching characteristics of mercury and arsenic in Chinese medical material. Anal Chim Acta 453:311–323CrossRefGoogle Scholar
  45. 45.
    Koch J, Sylvester S, Lai VWM, Owen A, Reimer KJ, Cullen WR (2007) Bioaccessibility and extraction of arsenic in Niu Huang Jie Du Pian pills. Toxicol Appl Pharm 222:357–364CrossRefGoogle Scholar
  46. 46.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5863CrossRefGoogle Scholar
  47. 47.
    Pastorek M, Gronesová P, Cholujová D, Hunáková Ľ, Bujňáková Z, Baláž P, Duraj J, Lee TC, Sedlák J (2014) Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. Neoplasma 61:700–709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zdenka Bujňáková
    • 1
    Email author
  • Peter Baláž
    • 1
  • Petre Makreski
    • 2
  • Gligor Jovanovski
    • 3
  • Mária Čaplovičová
    • 4
    • 5
  • Ľubomír Čaplovič
    • 6
  • Oleh Shpotyuk
    • 7
    • 8
  • Adam Ingram
    • 9
  • Te-Chang Lee
    • 10
  • Jing-Jy Cheng
    • 11
  • Ján Sedlák
    • 12
  • Erika Turianicová
    • 1
  • Anna Zorkovská
    • 1
  1. 1.Institute of GeotechnicsSlovak Academy of SciencesKošiceSlovakia
  2. 2.Institute of Chemistry, Faculty of Natural Sciences and MathematicsSs. Cyril and Methodius UniversitySkopjeRepublic of Macedonia
  3. 3.Research Center for Environment and MaterialsMacedonian Academy of Sciences and ArtsSkopjeRepublic of Macedonia
  4. 4.Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  5. 5.Center STU for Nanodiagnostics, University Research ParkSlovak University of TechnologyBratislavaSlovakia
  6. 6.Institute of Materials Science, Faculty of Materials Science and TechnologySlovak University of TechnologyTrnavaSlovakia
  7. 7.Scientific Research Company “Carat”LvivUkraine
  8. 8.Institute of PhysicsJan Dlugosz UniversityCzestochowaPoland
  9. 9.Opole University of TechnologyOpolePoland
  10. 10.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
  11. 11.National Research Institute of Chinese MedicineTaipeiTaiwan
  12. 12.Cancer Research InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations