Advertisement

Journal of Materials Science

, Volume 50, Issue 4, pp 1836–1847 | Cite as

Electrochemical copolymerization of 3,4-ethylenedioxythiophene and 6-cyanoindole and its electrochromic property

  • Chenxi Li
  • Changlong Liu
  • Liang Shi
  • Guangming NieEmail author
Original Paper

Abstract

A novel copolymer based on 6-cyanoindole (6CNIn) and 3,4-ethylenedioxythiophene (EDOT) was electrochemically synthesized in acetonitrile containing tetrabutylammonium tetrafluoroborate (TBATFB). The copolymer P(6CNIn-co-EDOT) was characterized by cyclic voltammetry, FT-IR, 1H NMR, SEM, and spectroelectrochemical analysis. According to the results of FT-IR and 1H NMR spectra, the electrochemical copolymerization located at C(2), C(3) position of 6CNIn. Spectroelectrochemical analysis indicates this copolymer film has distinct electrochromic properties, which can convert between brick-red in the reduced state and sky-blue in the oxidized state. Thus, an electrochromic device (ECD) based on P(6CNIn-co-EDOT) and poly(3,4-ethylenedioxythiophene) was also constructed, which had a color change from dark green in neutral state to dark blue in oxidized state. This ECD showed good optical contrast (30 % at 485 nm, 32 % at 610 nm), high coloration efficiency (216 cm2 C−1 at 485 nm, 223 cm2 C−1 at 610 nm), fast response time (0.7 s at 485 nm, 0.9 s at 610 nm), and long-term stability.

Keywords

Propylene Carbonate Feed Ratio Copolymer Film Cyclic Voltammetry Electrochromic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (51373089), NSF of Shandong (ZR2011BM003), Specialized Research Fund for the Doctoral Program of Higher Education (20123719120006), Scientific and Technical Development Project of Qingdao (11-2-4-3-(10)-jch), National Training Programs of Innovation and Entrepreneurship for Undergraduates (201410426036).

References

  1. 1.
    Ozyurt F, Gunbas EG, Durmus A et al (2008) Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline. Org Electron 9:296–302CrossRefGoogle Scholar
  2. 2.
    Kaya İ, Yıldırım M, Aydın A (2011) A new approach to the Schiff base-substituted oligophenols: the electrochromic application of 2-[3-thienylmethylene] aminophenol based co-polythiophenes. Org Electron 12:210–218CrossRefGoogle Scholar
  3. 3.
    Jensen J, Dyer AL, Shen DE et al (2013) Direct photopatterning of electrochromic polymers. Adv Funct Mater 23:3728–3737CrossRefGoogle Scholar
  4. 4.
    Aurora R, Niclas S, Lars JL et al (2010) White light with phosphorescent protein fibrils in LEDs. Nano Lett 10:2225–2230CrossRefGoogle Scholar
  5. 5.
    Lin Y, Chen Y, Chen Z et al (2010) Triphenylamine and quinoline-containing polyfluorene for blue light-emitting diodes. Eur Polym J 46:997–1003CrossRefGoogle Scholar
  6. 6.
    Chua LL, Zaumseil J, Chang JF et al (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199CrossRefGoogle Scholar
  7. 7.
    Zhen S, Xu J, Lu B et al (2014) Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochim Acta 146:666–678CrossRefGoogle Scholar
  8. 8.
    Krebs FC, Tromholt T, Jorgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2:873–886CrossRefGoogle Scholar
  9. 9.
    Herrero-Carvajal D, de la Peña A, González Cano RC et al (2014) EDOT-based copolymers with pendant anthraquinone units: analysis of their optoelectronic properties within the “double-cable” context. J Phys Chem C 118:9899–9910CrossRefGoogle Scholar
  10. 10.
    Sefer E, Koyuncu FB, Oguzhan E, Koyuncu S (2010) A new near-infrared switchable electrochromic polymer and its device application. J Polym Sci A 48:4419–4427CrossRefGoogle Scholar
  11. 11.
    Nie G, Zhou L, Guo Q et al (2010) A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices. Electrochem Commun 12:160–163CrossRefGoogle Scholar
  12. 12.
    Qin L, Xu J, Lu B et al (2012) Synthesis and electrochromic properties of polyacrylate functionalized poly(3,4-ethylenedioxythiophene) network films. J Mater Chem 22:18345–18353CrossRefGoogle Scholar
  13. 13.
    Hu D, Lu B, Duan X et al (2014) Synthesis of novel chiral l-leucine grafted PEDOT derivatives with excellent electrochromic performances. RSC Adv 4:35597–35608CrossRefGoogle Scholar
  14. 14.
    O’Connell CD, Higgins MJ, Nakashima H et al (2012) Vapor phase polymerization of EDOT from submicrometer scale oxidant patterned by dip-pen nanolithography. Langmuir 28:9953–9960CrossRefGoogle Scholar
  15. 15.
    Lu B, Zhang S, Qin L et al (2013) Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochim Acta 106:201–208CrossRefGoogle Scholar
  16. 16.
    Yu W, Chen J, Fu Y et al (2013) Electrochromic property of a copolymer based on 5-cyanoindole and 3,4-ethylenedioxythiophene and its application in electrochromic devices. J Electroanal Chem 700:17–23CrossRefGoogle Scholar
  17. 17.
    Elschner A, Kirchmeyer S, Lovenich W et al (2011) PEDOT: principles and applications of an intrinsically conductive polymer. Taylor & Francis Group, Boca RatonGoogle Scholar
  18. 18.
    Lu B, Zhen S, Zhang S et al (2014) Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polym Chem 5:4896–4908CrossRefGoogle Scholar
  19. 19.
    Deepa M, Awadhia A, Bhandari S (2009) Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film. Phys Chem Chem Phys 11:5674–5685CrossRefGoogle Scholar
  20. 20.
    Jeong YS, Akagi K (2011) Control of chirality and electrochromism in copolymer-type chiral PEDOT derivatives by means of electrochemical oxidation and reduction. Macromolecules 44:2418–2426CrossRefGoogle Scholar
  21. 21.
    Mackintosh JG, Redpath CR, Jones AC et al (1995) The electropolymerization and characterization of 5-cyanoindole. J Electroanal Chem 388:179–185CrossRefGoogle Scholar
  22. 22.
    Talbi H, Humbert B, Billaud D (1998) FTIR and Raman spectroscopic investigations on the redox behaviour of poly(5-cyanoindole) in acidic aqueous solutions. Spectrochim Acta A 54:1879–1893CrossRefGoogle Scholar
  23. 23.
    Talbi H, Billaud D (1998) Electrochemical properties of polyindole and poly(5-cyanoindole) in LiClO4–acetonitrile and in HCl and HClO4 solutions. Synth Met 93:105–110CrossRefGoogle Scholar
  24. 24.
    Xu J, Hou J, Zhang S et al (2006) Electrosyntheses of high quality poly(5-methylindole) films in mixed electrolytes of boron trifluoride diethyl etherate and diethyl ether. Eur Polym J 42:1384–1395CrossRefGoogle Scholar
  25. 25.
    Nie G, Cai T, Zhang S et al (2007) Electrodeposition of poly(indole-5-carboxylic acid) in boron trifluoride diethyl etherate containing additional diethyl ether. Electrochim Acta 52:7097–7106CrossRefGoogle Scholar
  26. 26.
    Yuen OY, Choy PY, Chow WK et al (2013) Synthesis of 3-cyanoindole derivatives mediated by copper(I) iodide using benzyl cyanide. J Org Chem 78:3374–3378CrossRefGoogle Scholar
  27. 27.
    Nie G, Zhou L, Yang H (2011) Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. J Mater Chem 21:13873–13880CrossRefGoogle Scholar
  28. 28.
    Reddy BN, Deepa M (2013) Electrochromic switching and nanoscale electrical properties of a poly(5-cyano indole)-poly(3,4-ethylenedioxypyrrole) device with a free standing ionic liquid electrolyte. Polymer 54:5801–5811CrossRefGoogle Scholar
  29. 29.
    Deletioğlu D, Hasdemir E, Solak AO et al (2010) Preparation and characterization of poly(indole-3-carboxaldehyde) film at the glassy carbon surface. Thin Solid Films 519:784–789CrossRefGoogle Scholar
  30. 30.
    Talbi H, Billaud D, Louarn G et al (2000) UV-vis and Raman spectroelectrochemical investigation of the redox behavior of poly(5-cyanoindole) in acidic aqueous solutions. Spectrochim Acta A 56:717–728CrossRefGoogle Scholar
  31. 31.
    Giovanella U, Botta C, Galeotti F et al (2013) Perfluorinated polymer with unexpectedly efficient deep blue electroluminescence for full-colour OLED displays and light therapy applications. J Mater Chem 1:5322–5329Google Scholar
  32. 32.
    Jeong YS, Akagi K (2011) Liquid crystalline PEDOT derivatives exhibiting reversible anisotropic electrochromism and linearly and circularly polarized dichroism. J Mater Chem C 21:10472–10481CrossRefGoogle Scholar
  33. 33.
    Yang Z, Xue Z, Liao Y et al (2013) Hierarchical hybrids of carbon nanotubes in amphiphilic poly-(ethyleneoxide)-block-polyaniline through a facile method: from smooth to thorny. Langmuir 29:3757–3764CrossRefGoogle Scholar
  34. 34.
    Bhattacharyya D, Gleason KK (2011) Single-step oxidative chemical vapor deposition of –COOH functional conducting copolymer and immobilization of biomolecule for sensor application. Chem Mater 23:2600–2605CrossRefGoogle Scholar
  35. 35.
    Yen WC, Lee YH, Lin JF et al (2011) Effect of TiO2 nanoparticles on self-assembly behaviors and optical and photovoltaic properties of the P3HT-b-P2VP block copolymer. Langmuir 27:109–115CrossRefGoogle Scholar
  36. 36.
    Bhatt MP, Sista P, Hao J et al (2012) Electronic properties-morphology correlation of a rod-rod semiconducting liquid crystalline block copolymer containing poly(3-hexylthiophene). Langmuir 28:12762–12770CrossRefGoogle Scholar
  37. 37.
    Ouyang M, Fu Z, Lv X et al (2013) A multichromic copolymer based on 4-(9H-carbazol-9-yl)-N,N-diphenylaniline and 3,4-ethylenedioxythiophene prepared via electrocopolymerization. J Electrochem Soc 160:H787–H792CrossRefGoogle Scholar
  38. 38.
    Yue R, Yao Z, Geng J et al (2013) Facile electrochemical synthesis of a conducting copolymer from 5-aminoindole and EDOT and its use as Pt catalyst support for formic acid electrooxidation. J Solid State Electron 17:751–760CrossRefGoogle Scholar
  39. 39.
    Miozzo L, Battaglini N, Braga D et al (2012) Synthesis and characterization of all-conjugated copolymers of 3-hexyl-thiophene and EDOT by grignard metathesis polymerization. J Polym Sci A 50:534–541CrossRefGoogle Scholar
  40. 40.
    Ma X, Ni X (2014) Copolymerization of EDOT with pyrrole on TiO2 semiconductor films by one-step reaction, structure-dependent electronic properties, and charge conduction models of the composite films. Langmuir 30:2241–2248CrossRefGoogle Scholar
  41. 41.
    Algi MP, Öztaş Z, Tirkes S et al (2013) A new electrochromic copolymer based on dithienylpyrrole and EDOT. Org Electron 14:1094–1102CrossRefGoogle Scholar
  42. 42.
    Søndergaard RR, Hösel M, Krebs FC (2013) Roll-to-roll fabrication of large area functional organic materials. J Polym Sci B 51:16–34CrossRefGoogle Scholar
  43. 43.
    Søndergaard RR, Hösel M, Jørgensen M et al (2013) Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil. J Polym Sci B 51:132–136CrossRefGoogle Scholar
  44. 44.
    Jensen J, Dam HF, Reynolds JR et al (2012) Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes. J Polym Sci B 50:536–545CrossRefGoogle Scholar
  45. 45.
    Jensen J, Krebs FC (2014) From the bottom up–flexible solid state electrochromic devices. Adv Mater 26:7231–7234CrossRefGoogle Scholar
  46. 46.
    Jensen J, Hösel M, Kim I et al (2014) Fast switching ITO free electrochromic devices. Adv Funct Mater 24:1228–1233CrossRefGoogle Scholar
  47. 47.
    Jensen J, Madsen MV, Krebs FC (2013) Photochemical stability of electrochromic polymers and devices. J Mater Chem C 1:4826–4835CrossRefGoogle Scholar
  48. 48.
    Ak M, Camurlu P, Yılmaz F et al (2006) Electrochromic properties and electrochromic device application of copolymer of N-(4-(3-thienyl methylene)-oxycarbonylphenyl) maleimide with thiophene. J Appl Polym Sci 102:4500–4505CrossRefGoogle Scholar
  49. 49.
    Reeves BD, Grenier CRG, Argun AA et al (2004) Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 37:7559–7569CrossRefGoogle Scholar
  50. 50.
    Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320CrossRefGoogle Scholar
  51. 51.
    Nie G, Qu L, Zhang Y et al (2008) Electrochemical copolymerization of 3,4-ethylenedioxythiophene and 5-methylindole and characterizations of the copolymers. J Appl Polym Sci 109:373CrossRefGoogle Scholar
  52. 52.
    Nie G, Yang H, Wang S et al (2011) High-quality inherently organic conducting polymers electrosynthesized from fused-ring compounds in a new electrolytic system based on boron trifluoride diethyl etherate. Crit Rev Solid State Mater Sci 36:209–228CrossRefGoogle Scholar
  53. 53.
    He Y, Guo WJ, Zhang GY et al (2011) Electrochemical polymerization of N-(9-fluorenylmethoxycarbony)-glycine and characterization of its polymers. Adv Mater 306:297–300Google Scholar
  54. 54.
    Camurlu P, Cirpan A, Toppare L (2004) Dual type complementary colored polymer electrochromic devices utilized by 3-ester substituted thiophenes. J Electroanal Chem 572:61–65CrossRefGoogle Scholar
  55. 55.
    Zhang C, Xu Y, Wang NC et al (2009) Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene. Electrochim Acta 55:13–18CrossRefGoogle Scholar
  56. 56.
    Lu B, Wang J, Yue R et al (2012) Electrosynthesis and characterization of a polyfluorene derivative with green-light-emitting property. J Mater Sci 47:315–322CrossRefGoogle Scholar
  57. 57.
    Turac E, Ak M, Sahmetlioglu E et al (2011) Synthesis and characterization of poly 2-[3-(1H-pyrrol-2-yl)phenyl]-1H-pyrrole and its copolymer with EDOT. Russ J Gen Chem 81:2510–2516CrossRefGoogle Scholar
  58. 58.
    Zhi C, Cheng H (2011) Study on the electrochemical properties of zinc/polyindole secondary battery. J Power Sources 196:10731–10736CrossRefGoogle Scholar
  59. 59.
    Berlin A, Zotti G, Zecchin S et al (2004) New low-gap polymers from 3,4-ethylenedioxythiophene-bis-substituted electron-poor thiophenes. The roles of thiophene, donor-acceptor alternation, and copolymerization in intrinsic conductivity. Chem Mater 16:3667–3676CrossRefGoogle Scholar
  60. 60.
    Zhang S, Xu J, Lu B et al (2014) Electrochromic enhancement of poly(3,4-ethylenedioxythiophene) films functionalized with hydroxymethyl and ethylene oxide. J Polym Sci A 52:1989–1999CrossRefGoogle Scholar
  61. 61.
    Seo KI, Chung IJ (2000) Reaction analysis of 3,4-ethylenedioxythiophene with potassium persulfate in aqueous solution by using a calorimeter. Polymer 41:4491–4499CrossRefGoogle Scholar
  62. 62.
    Nie G, Qu L, Xu J et al (2008) Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim Acta 53:8351–8358CrossRefGoogle Scholar
  63. 63.
    Nie G, Han X, Hou J et al (2007) Low-potential electrochemical polymerization of 5-fluoroindole and characterization of its polymers. J Electroanal Chem 604:125–126CrossRefGoogle Scholar
  64. 64.
    Xu J, Hou J, Zhou W et al (2006) 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives. Spectrochim Acta A 63:723–728CrossRefGoogle Scholar
  65. 65.
    Chen Z, Wannere CS, Corminboeuf C et al (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842–3888CrossRefGoogle Scholar
  66. 66.
    Unur E, Beaujuge PM, Ellinger S et al (2009) Black to transmissive switching in a pseudo three-electrode electrochromic device. Chem Mater 21:5145–5153CrossRefGoogle Scholar
  67. 67.
    Celebi S, Balan A, Epik B et al (2009) Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit. Org Electron 10:631–636CrossRefGoogle Scholar
  68. 68.
    Kaczmarek H, Metzler M, Scigalski F (2014) Photochemical stability of poly(acrylic acid)/silver nanocomposite. Mater Lett 135:110–114CrossRefGoogle Scholar
  69. 69.
    Kang JH, Oh YJ, Paek SM et al (2009) Electrochromic device of PEDOT-PANI hybrid system for fast response and high optical contrast. Sol Energy Mater Sol Cells 93:2040–2044CrossRefGoogle Scholar
  70. 70.
    Özkut Mİ, Atak S, Önal AM et al (2011) A blue to highly transmissive soluble electrochromic polymer based on poly (3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J Mater Chem 21:5268–5272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chenxi Li
    • 1
  • Changlong Liu
    • 1
  • Liang Shi
    • 1
  • Guangming Nie
    • 1
    Email author
  1. 1.State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations