Skip to main content
Log in

A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel mesoporous bioactive glass (MBG) of composition 64SiO2–26CaO–10P2O5 (mol %) was prepared by hydrothermal method using H3PO4 as a precursor for P2O5. The effect of use of organic triethylphosphate (TEP) and inorganic H3PO4 in MBG synthesis on glass transition temperature (T g), crystallinity, morphology and bioactivity of MBGs was studied. Phase purity determination and structural analysis were done using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, respectively. XRD revealed that MBG prepared from H3PO4 (MBG-H3PO4) when sintered at 700 °C was partially glassy/amorphous in nature and contained a mixture of crystalline apatite, wollastonite, calcium phosphate and calcium silicate phases. Calcined MBG prepared from TEP (MBG-TEP) contained only wollastonite and calcium silicate phases. Particle size and surface area determined by BET surface area analysis showed higher surface area (310 m2 g−1) for MBG-H3PO4 as compared to MBG-TEP (86 m2 g−1). It also had a smaller particle size (20 nm) and 70 % higher pore volume (0.88 cm3 g−1) for MBG-H3PO4 as compared to MBG-TEP (60 nm particle size and 0.23 cm3 g−1 pore volume). Thermal studies showed that use of H3PO4 decreases T g and increased ΔT (difference between T g and crystallization initiation temperature Tco). Low T g and high ΔT also enhanced bioactivity of MBGs. Bioactivity was determined by immersion in a simulated body fluid for varying time intervals for a maximum period of 14 days. It revealed enhanced bioactivity, as evident by the formation of apatite layer on the surface, for MBG-H3PO4 as compared to MBG-TEP. Scanning electron microscopy and FTIR spectroscopy also supported this observation. Antibacterial studies with Escherichia Coli bacteria, MBG-H3PO4 showed better antibacterial behaviour than MBG-TEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu C, Chang J (2012) Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus 2(3):292–306

    Article  Google Scholar 

  2. Hench LL, Wheeler DL, Greenspan DC (1998) Molecular control of bioactivity in sol–gel glasses. J Sol Gel Sci Technol 13(1–3):245–250

    Article  Google Scholar 

  3. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AH, Ferreira JM (2007) Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater 3(2):255–262

    Article  Google Scholar 

  4. Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface layers on bioactive glasses. Biomaterials 15(10):865–870. doi:10.1016/0142-9612(94)90044-2

    Article  Google Scholar 

  5. Rehman I, Knowles JC, Bonfield W (1998) Analysis of in vitro reaction layers formed on Bioglass® using thin-film X-ray diffraction and ATR-FTIR microspectroscopy. J Biomed Mater Res 41(1):162–166. doi:10.1002/(sici)1097-4636(199807)41:1<162:aid-jbm19>3.0.co;2-p

    Article  Google Scholar 

  6. Felício-Fernandes G, Laranjeira M (2000) Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation. Quim Nova 23(4):441–446

    Article  Google Scholar 

  7. Xia W, Chang J (2008) Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non Cryst Solids 354(12):1338–1341

    Article  Google Scholar 

  8. Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36(8):2431–2439. doi:10.1016/j.ceramint.2010.07.010

    Article  Google Scholar 

  9. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486. doi:10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  10. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740

    Article  Google Scholar 

  11. Siqueira RL, Peitl O, Zanotto ED (2011) Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C 31(5):983–991. doi:10.1016/j.msec.2011.02.018

    Article  Google Scholar 

  12. Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28(50):17465–17476. doi:10.1021/la303768b

    Article  Google Scholar 

  13. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  14. H-s Yun, S-e Kim, Y-t Hyun (2008) Preparation of 3D cubic ordered mesoporous bioactive glasses. Solid State Sci 10(8):1083–1092. doi:10.1016/j.solidstatesciences.2007.11.037

    Article  Google Scholar 

  15. Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7):964–973

    Article  Google Scholar 

  16. Aguiar H, Serra J, González P, León B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids 355(8):475–480. doi:10.1016/j.jnoncrysol.2009.01.010

    Article  Google Scholar 

  17. Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) Vibrational spectroscopic studies of sol–gel derived physical and chemical bonded ORMOSILs. J Non Cryst Solids 351(5):372–379. doi:10.1016/j.jnoncrysol.2005.01.004

    Article  Google Scholar 

  18. Aina V, Malavasi G, Fiorio Pla A, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 5(4):1211–1222. doi:10.1016/j.actbio.2008.10.020

    Article  Google Scholar 

  19. El-Kady AM, Ali AF (2012) Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int 38(2):1195–1204. doi:10.1016/j.ceramint.2011.07.069

    Article  Google Scholar 

  20. Vaid C, Murugavel S, Das C, Asokan S (2014) Mesoporous bioactive glass and glass–ceramics: influence of the local structure on in vitro bioactivity. Microporous Mesoporous Mater 186:46–56. doi:10.1016/j.micromeso.2013.11.027

    Article  Google Scholar 

  21. Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110(3):522–530. doi:10.1016/j.jconrel.2005.11.002

    Article  Google Scholar 

  22. Carta D, Knowles JC, Smith ME, Newport RJ (2007) Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. J Non Cryst Solids 353(11–12):1141–1149. doi:10.1016/j.jnoncrysol.2006.12.093

    Article  Google Scholar 

  23. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612. doi:10.1002/jbm.10280

    Article  Google Scholar 

  24. García A, Cicuéndez M, Izquierdo-Barba I, Arcos D, Vallet-Regí M (2009) Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2–CaO–P2O5 mesoporous bioactive glasses. Chem Mater 21(22):5474–5484. doi:10.1021/cm9022776

    Article  Google Scholar 

  25. Yan X, Deng H, Huang X, Lu G, Qiao S, Zhao D, Yu C (2005) Mesoporous bioactive glasses. I. Synthesis and structural characterization. J Non Cryst Solids 351(40):3209–3217

    Article  Google Scholar 

  26. Lei B, Chen X, Wang Y, Zhao N, Du C, Fang L (2010) Influence of sintering temperature on pore structure and apatite formation of a sol–gel-derived bioactive glass. J Am Ceram Soc 93(1):32–35

    Article  Google Scholar 

  27. Ma J, Chen C, Wang D, Meng X, Shi J (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int 36(6):1911–1916

    Article  Google Scholar 

  28. Peitl Filho O, Latorre GP (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45 %. J Biomed Mater Res 30:509–514

    Article  Google Scholar 

  29. Huang J, Silvio LD, Wang M, Rehman I, Ohtsuki C, Bonfield W (1997) Evaluation of in vitro bioactivity and biocompatibility of Bioglass®-reinforced polyethylene composite. J Mater Sci Mater Med 8(12):809–813. doi:10.1023/a:1018581100400

    Article  Google Scholar 

  30. Kokubo T, Ogawa T (2004) CaO–SiO2-based bioactive glass and sintered calcium phosphate glass using same. Google Patents

  31. López-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regí M (2006) Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem Mater 18(13):3137–3144. doi:10.1021/cm060488o

    Article  Google Scholar 

  32. Harmer MA, Vega AJ (1995) Nuclear magnetic resonance study of a high-surface-area aluminum phosphate glass and its thermally reversible sol-gel precursor. Solid State Nucl Magn Reson 5(1):35–49. doi:10.1016/0926-2040(95)00036-P

    Article  Google Scholar 

  33. Serra J, González P, Liste S, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med 13(12):1221–1225. doi:10.1023/a:1021174912802

    Article  Google Scholar 

  34. Horcajada P, Rámila A, Boulahya K, González-Calbet J, Vallet-Regí M (2004) Bioactivity in ordered mesoporous materials. Solid State Sci 6(11):1295–1300. doi:10.1016/j.solidstatesciences.2004.07.026

    Article  Google Scholar 

  35. Wheeler DL, Eschbach EJ, Hoellrich RG, Montfort MJ, Chamberland DL (2000) Assessment of resorbable bioactive material for grafting of critical-size cancellous defects. J Orth Res 18(1):140–148. doi:10.1002/jor.1100180120

    Article  Google Scholar 

  36. Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo A, Faure J, Ferreira J (2008) An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent Mater 24(10):1343–1351

    Article  Google Scholar 

  37. Di Zhang EM, Hupa Leena, Ylänen Heimo O, Viljanen Matti K, Hupa Mikko (2007) Factors controlling antibacterial properties of bioactive glasses. Key Eng Mater 330–332:173–176. doi:10.4028/www.scientific.net/KEM.330-332.173

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank COMSATs Institute of Information Technology for providing the grant CIIT (16-14/CRGP/CIIT/LHR/12/201) for this study. We are also thankful to International Foundation of Science Sweden for facilitating us to purchase some equipment for performing the experiments by Grant (F/5375-1). We are also grateful to the Physics Department, G.C. University, Lahore, for facilitating us with SEM and XRD facilities for characterization of synthesized materials. Ministry of Science and Technology, Government of Pakistan and Higher Education Commission Pakistan are also thanked for developmental grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Tufail Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.T., Ain, Q., Chaudhry, A.A. et al. A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. J Mater Sci 50, 1794–1804 (2015). https://doi.org/10.1007/s10853-014-8742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8742-x

Keywords

Navigation