Journal of Materials Science

, Volume 50, Issue 4, pp 1701–1709 | Cite as

DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites

  • Hai-Yan Su
  • Keju Sun
Original Paper


Rare earth and alkaline earth metal perovskites with general formula ABO3 have attracted much attention as electrocatalysts for state-of-the-art fuel cells, and catalysts for hydrogen generation and hydrocarbons oxidation. Tuning the ion conductivity through doping A and B and subsequent formation of oxygen vacancies is essential for the performance of perovskites materials. To provide insights into factors that affect stability of oxygen vacancies and understand the origin of the activity of doped perovskite materials, we investigate the structure and energetics of cubic ABO3 perovskites (A = La and/or Be, Mg, Ca, Sr, Ba; B = Ti, V, Cr, Mn, Fe, Co, and Ni) using density functional theory calculations. It is found that the lattice constant of ABO3 generally increases as the ionic radius of A and B; the bulk formation energy of ABO3 is decomposed into the ionization energy and lattice energy, which depend on the ionic radius and valence. The trend of bulk formation energy corresponds to that of ionization energy at a given ionic valence, while corresponds to that of lattice energy as doping La by alkali earth metals with lower valence. There exists a good linear relationship between the bulk formation energy and oxygen vacancy formation energy. This work provides an understanding toward the origin of the activity of perovskites at the atomic level.


Perovskite Oxygen Vacancy Lattice Constant Formation Energy Solid Oxide Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for the finical support from the Natural Science Foundation of China (21103164, 21273224, 21103165). We thank Bryan Goldsmith from UCSB for providing helpful suggestions and polishing the language.

Supplementary material

10853_2014_8731_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)


  1. 1.
    Arakawa T, Kurachi H, Shiokawa J (1985) Physicochemical properties of rare-earth perovskite oxides used as gas sensor material. J Mater Sci 20:1207–1210CrossRefGoogle Scholar
  2. 2.
    Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52CrossRefGoogle Scholar
  3. 3.
    Israel C, Calderon MJ, Mathur ND (2007) The current spin on manganites. Mater Today 10:24–32CrossRefGoogle Scholar
  4. 4.
    Kim CH, Qi G, Dahlberg K, Li W (2010) Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327:1624–1627CrossRefGoogle Scholar
  5. 5.
    Mathur ND, Burnell G, Isaac SP, Jackson TJ, Teo BS, MacManusDriscoll JL, Cohen LF, Evetts JE, Blamire MG (1997) Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. Nature 387:266–268CrossRefGoogle Scholar
  6. 6.
    Huang YH, Dass RI, Xing ZL, Goodenough JB (2006) Double perovskites as anode materials for solid-oxide fuel cells. Science 312:254–257CrossRefGoogle Scholar
  7. 7.
    Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A 334:311–320CrossRefGoogle Scholar
  8. 8.
    Nitadori T, Ichiki T, Misono M (1988) Catalytic properties of perovskite-type mixed oxides (ABO3) consisting of rare-earth and 3d Transition-metals-the roles of the A-site and B-site ions. Bull Chem Soc Jpn 61:621–626CrossRefGoogle Scholar
  9. 9.
    Thiele D, Zuettel A (2008) Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes. J Power Sources 183:590–594CrossRefGoogle Scholar
  10. 10.
    Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M (2010) Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim Acta 55:5847–5853CrossRefGoogle Scholar
  11. 11.
    Dutta A, Mukhopadhyay J, Basu RN (2009) Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells. J Eur Ceram Soc 29:2003–2011CrossRefGoogle Scholar
  12. 12.
    Huang C, Chen D, Lin Y, Ran R, Shao Z (2010) Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3−δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. J Power Sources 195:5176–5184CrossRefGoogle Scholar
  13. 13.
    Ishihara T, Shibayama T, Nishiguchi H, Takita Y (2001) Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2−xNixO3 perovskite oxide and application for the electrolyte of solid oxide fuel cells. J Mater Sci 36:1125–1131CrossRefGoogle Scholar
  14. 14.
    Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRefGoogle Scholar
  15. 15.
    Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833CrossRefGoogle Scholar
  16. 16.
    Kim JH, Manthiram A (2008) LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155:B385–B390CrossRefGoogle Scholar
  17. 17.
    Kim-Lohsoontorn P, Brett DJL, Laosiripojana N, Kim YM, Bae JM (2010) Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3−δ-yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen electrodes. Int J Hydrogen Energy 35:3958–3966CrossRefGoogle Scholar
  18. 18.
    Li X, Zhao H, Zhou X, Xu N, Xie Z, Chen N (2010) Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells. Int J Hydrogen Energy 35:7913–7918CrossRefGoogle Scholar
  19. 19.
    Lin Y, Ran R, Zheng Y, Shao Z, Jin W, Xu N, Ahn J (2008) Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. J Power Sources 180:15–22CrossRefGoogle Scholar
  20. 20.
    Orera A, Slater PR (2010) New chemical systems for solid oxide fuel cells. Chem Mater 22:675–690CrossRefGoogle Scholar
  21. 21.
    Pellegrino L, Biasotti M, Bellingeri E, Bernini C, Siri AS, Marre D (2009) All-Oxide crystalline microelectromechanical systems: bending the functionalities of transition-metal oxide thin films. Adv Mater 21:2377–2381CrossRefGoogle Scholar
  22. 22.
    Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRefGoogle Scholar
  23. 23.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385CrossRefGoogle Scholar
  24. 24.
    Yang C, Jin C, Coffin A, Chen F (2010) Characterization of infiltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells. Int J Hydrogen Energy 35:5187–5193CrossRefGoogle Scholar
  25. 25.
    Yang X, Irvine JTS (2008) (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam. J Mater Chem 18:2349–2354CrossRefGoogle Scholar
  26. 26.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1990) Chemical-potential diagrams for rare-earth transition-metal oxygen systems-I, Ln-V-O and Ln-Mn-O systems. J Am Ceram Soc 73:649–658CrossRefGoogle Scholar
  27. 27.
    Zhou W, Ran R, Shao Z (2009) Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J Power Sources 192:231–246CrossRefGoogle Scholar
  28. 28.
    Kan DS, Terashima T, Kanda R, Masuno A, Tanaka K, Chu SC, Kan H, Ishizumi A, Kanemitsu Y, Shimakawa Y, Takano M (2005) Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat Mater 4:816–819CrossRefGoogle Scholar
  29. 29.
    Liu ZQ, Leusink DP, Wang X, Lu WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando (2011) Metal-insulator transition in SrTiO3-x thin films induced by frozen-out carriers. Phys Rev Lett 107:146802CrossRefGoogle Scholar
  30. 30.
    Chen HT, Raghunath P, Lin MC (2011) Computational Investigation of O2 Reduction and diffusion on 25 % Sr-doped LaMnO3 cathodes in solid oxide fuel cells. Langmuir 27:6787–6793CrossRefGoogle Scholar
  31. 31.
    Choi Y, Lynch ME, Lin MC, Liu M (2009) Prediction of O2 dissociation kinetics on LaMnO3-based cathode materials for solid oxide fuel cells. J Phys Chem C 113:7290–7297CrossRefGoogle Scholar
  32. 32.
    Choi Y, Mebane DS, Lin MC, Liu M (2007) Oxygen reduction on LaMnO3-based cathode materials in solid oxide fuel cells. Chem Mater 19:1690–1699CrossRefGoogle Scholar
  33. 33.
    Choi Y, Lin MC, Liu M (2010) Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations. J Power Sources 195:1441–1445CrossRefGoogle Scholar
  34. 34.
    Mastrikov YA, Merkle R, Heifets E, Kotomin EA, Maier J (2010) Pathways for oxygen incorporation in mixed conducting perovskites: a DFT-based mechanistic analysis for (La, Sr)MnO3−δ. J Phys Chem C 114:3017–3027CrossRefGoogle Scholar
  35. 35.
    Mizusaki J, Yasuda I, Shimoyama J, Yamauchi S, Fueki K (1993) Electrical-conductivity, defect equilibrium and oxygen vacancy diffusion-cofficient of La1−xCaxAlO3−δ Single-crystals. J Electrochem Soc 140:467–471CrossRefGoogle Scholar
  36. 36.
    Jones A, Islam MS (2008) Atomic-scale insight into LaFeO3 perovskite: defect nanoclusters and ion migration. J Phys Chem C 112:4455–4462CrossRefGoogle Scholar
  37. 37.
    Bidrawn F, Lee S, Vohs JM, Gorte RJ (2008) The effect of Ca, Sr, and Ba doping on the ionic conductivity and cathode performance of LaFeO3. J Electrochem Soc 155:B660–B665CrossRefGoogle Scholar
  38. 38.
    Kuhn JN, Matter PH, Millet J-MM, Watson RB, Ozkan US (2008) Oxygen exchange kinetics over Sr- and Co-doped LaFeO3. J Phys Chem C 112:12468–12476CrossRefGoogle Scholar
  39. 39.
    Yin W-J, Wei S-H, Al-Jassim MM, Yan Y (2012) Origin of the diverse behavior of oxygen vacancies in ABO3 perovskites: a symmetry based analysis. Phys Rev B 85:201201CrossRefGoogle Scholar
  40. 40.
    Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  42. 42.
    Lee Y-L, Kleis J, Rossmeisl J, Morgan D (2009) Ab initio energetics of LaBO3(001) (B = Mn, Fe Co, and Ni) for solid oxide fuel cell cathodes. Phys Rev B 80:224101CrossRefGoogle Scholar
  43. 43.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  44. 44.
    Bollinger MV, Jacobsen KW, Norskov JK (2003) Atomic and electronic structure of MoS2 nanoparticles. Phys Rev B 67:085410CrossRefGoogle Scholar
  45. 45.
    Sharma V, Pilania G, Rossetti GA Jr, Slenes K, Ramprasad R (2013) Comprehensive examination of dopants and defects in BaTiO3 from first principles. Phys Rev B 87:134109CrossRefGoogle Scholar
  46. 46.
    Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B 73:195107CrossRefGoogle Scholar
  47. 47.
    Fernandez EM, Moses PG, Toftelund A, Hansen HA, Martinez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Norskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed 47:4683–4686CrossRefGoogle Scholar
  48. 48.
    Martinez JI, Hansen HA, Rossmeisl J, Norskov JK (2009) Formation energies of rutile metal dioxides using density functional theory. Phys Rev B 79:045120CrossRefGoogle Scholar
  49. 49.
    Pople JA, Headgordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629CrossRefGoogle Scholar
  50. 50.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins College, New YorkGoogle Scholar
  51. 51.
    Akhade SA, Kitchin JR (2011) Effects of strain, d-band filling, and oxidation state on the bulk electronic structure of cubic 3d perovskites. J Chem Phys 135:104702CrossRefGoogle Scholar
  52. 52.
    Ali Z, Ahmad I (2013) Band Profile Comparison of the Cubic Perovskites CaCoO3 and SrCoO3. J Electron Mater 42:438–444CrossRefGoogle Scholar
  53. 53.
    Ali Z, Ahmad I, Khan B, Khan I (2013) Robust half-metallicity and magnetic properties of cubic perovskite CaFeO3. Chinese Phys Lett 30:047504CrossRefGoogle Scholar
  54. 54.
    Kanamaru F, Miyamoto H, Mimura Y, Koizumi M, Shimada M, Kume S, Shin S (1970) Synthesis of a new perovskite CaFeO3. Mater Res Bull 5:257–261CrossRefGoogle Scholar
  55. 55.
    Li Z, Iitaka T, Tohyama T (2012) Pressure-induced ferromagnetism in cubic perovskite SrFeO3 and BaFeO3. Phys Rev B 86:094422CrossRefGoogle Scholar
  56. 56.
    Macchesn Jb, Jetzt JJ, Potter JF, Williams HJ, Sherwood RC (1966) Electrical and magnetic properties of system SrFeO3–BiFeO3. J Am Ceram Soc 49:644–647CrossRefGoogle Scholar
  57. 57.
    Long Y, Kaneko Y, Ishiwata S, Taguchi Y, Tokura Y (2011) Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties. J Phys Condens Matter 23:245601CrossRefGoogle Scholar
  58. 58.
    Yu L, Jin L, Han M (2012) First-principles study on electronic structures and oxygen vacancy energies of perovskite-type oxides BaBO3-delta (B = Fe, Co, Nb). J Synth Cryst 41:747–752Google Scholar
  59. 59.
    Erchak M, Fankuchen I, Ward R (1946) Reaction between ferric oxide and Barium carbonate in the solid phase-identification of phases by X-ray diffraction. J Am Chem Soc 68:2085–2093CrossRefGoogle Scholar
  60. 60.
    Shen P, Liu X, Wang H, Ding W (2010) Niobium doping effects on performance of BaCo0.7Fe0.3−xNbxO3-delta perovskite. J Phys Chem C 114:22338–22345CrossRefGoogle Scholar
  61. 61.
    Calle-Vallejo F, Martinez JI, Garcia-Lastra JM, Mogensen M, Rossmeisl J (2010) Trends in stability of perovskite oxides. Angew Chem Int Ed 49:7699–7701CrossRefGoogle Scholar
  62. 62.
    Slater JC (1930) Atomic shielding constants. Phys Rev 36:0057–0064CrossRefGoogle Scholar
  63. 63.
    Pena MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2017CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations