Advertisement

Journal of Materials Science

, Volume 50, Issue 4, pp 1553–1564 | Cite as

Mechanical properties of amorphous silicon carbonitride thin films at elevated temperatures

  • Radim Ctvrtlik
  • Marwan S. Al-Haik
  • Valeriy Kulikovsky
Original Paper

Abstract

The mechanical properties of amorphous silicon carbonitride (a-SiC x N y ) films with various nitrogen content (y = 0–40 at.%) were investigated in situ at elevated temperatures up to 650 °C in inert atmosphere. A SiC film was measured also at 700 °C in air. The hardness and elastic modulus were evaluated using instrumented nanoindentation with thermally stable cubic boron nitride Berkovich indenter. Both the sample and the indenter were separately heated during the experiments to temperatures of 300, 500, and 650 °C. Short duration high temperature creep tests (1200 s) of the films were also carried out. The results revealed that the room temperature hardness and elastic modulus deteriorate with the increase of the nitrogen content. Furthermore, the hardness of both the a-SiC and the a-SiCN films with lower nitrogen content at 300 °C drops to approx. 77 % of the corresponding room temperature values, while it reduces to 69 % for the a-SiCN film with 40 at.% of nitrogen. Further increase of temperature is accompanied with minor reduction in hardness except for the a-SiCN film with highest nitrogen content, where the hardness decreases at a much faster rate. Upon heating up to 500 °C, the elastic modulus of the a-SiCN film decreases, while it increases at 650 °C due to the pronounced effect of short-range ordering. The steady-state creep rate increases at elevated temperatures and the a-SiC exhibits slower creep rates compared to the a-SiCN films. The value of the universal constant x = 7 relating the W p/W t and H/E * was established and its applicability was demonstrated. Analysis of the experimental indentation data suggests a theoretical limit of hardness to elastic modulus ratio of 0.143.

Keywords

Elastic Modulus High Nitrogen Content Nanoindentation Test Thermal Drift Nanoindentation Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic. Dr. Ctvrtlik also acknowledges the support through the Fulbright Scholar program.

References

  1. 1.
    Badzian A et al (1998) Silicon carbonitride: a rival to cubic boron nitride. Diam Relat Mater 7(10):1519–1525CrossRefGoogle Scholar
  2. 2.
    An L et al (1998) Newtonian viscosity of amorphous silicon carbonitride at high temperature. J Am Ceram Soc 81(5):1349–1352CrossRefGoogle Scholar
  3. 3.
    Riedel R et al (1995) A covalent micro nanocomposite resistant to high-temperature oxidation. Nature 374(6522):526–528CrossRefGoogle Scholar
  4. 4.
    Bielinski D, Wrobel AM, Walkiewicz-Pietrzykowska A (2002) Mechanical and tribological properties of thin remote microwave plasma CVD a-Si:N: C films from a single-source precursor. Tribol Lett 13(2):71–76CrossRefGoogle Scholar
  5. 5.
    Hoche H et al (2008) Relationship of chemical and structural properties with the tribological behavior of sputtered SiCN films. Surf Coat Technol 202(22–23):5567–5571CrossRefGoogle Scholar
  6. 6.
    Tomasella E et al (2009) Structural and optical investigations of silicon carbon nitride thin films deposited by magnetron sputtering. Plasma Processes Polym 6(SUPPL. 1):S11–S16CrossRefGoogle Scholar
  7. 7.
    Sundaram KB, Alizadeh J (2000) Deposition and optical studies of silicon carbide nitride thin films. Thin Solid Films 370(1):151–154CrossRefGoogle Scholar
  8. 8.
    Liew LA et al (2002) Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens Actuators A 95(2–3):120–134CrossRefGoogle Scholar
  9. 9.
    Carreño MNP, Lopes AT (2004) Self-sustained bridges of a-SiC: H films obtained by PECVD at low temperatures for MEMS applications. J Non-Cryst Solids 338–340(1 SPEC. ISS.):490–495CrossRefGoogle Scholar
  10. 10.
    Mehregany M, Zorman CA (1999) SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355–356(0):518–524Google Scholar
  11. 11.
    Leo A et al (2010) Characterization of thick and thin film SiCN for pressure sensing at high temperatures. Sensors 10(2):1338–1354CrossRefGoogle Scholar
  12. 12.
    Yang J (2013) A harsh environment wireless pressure sensing solution utilizing high temperature electronics. Sensors 13(3):2719–2734CrossRefGoogle Scholar
  13. 13.
    Iwamoto Y (2004) Microporous ceramic membranes for high-temperature separation of hydrogen. Membrane 29(5):258–264CrossRefGoogle Scholar
  14. 14.
    Wijesundara MBJ, Azevedo RG (2011) Silicon carbide microsystems for harsh environments. In: MEMS reference shelf, vol xv. Springer, New York, p 232Google Scholar
  15. 15.
    Lee Y, McKrell TJ, Yue C, Kazimi MS (2013) Safety assessment of SiC cladding oxidation under loss-of-coolant accident conditions in light water reactors. Nucl Technol 183(2):8Google Scholar
  16. 16.
    Stempien JD, Carpenter DM, Kohse G, Kazimi MS (2013) Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions. Nucl Technol 183(1):17Google Scholar
  17. 17.
    Fox-Rabinovich GS et al (2008) Effect of temperature of annealing below 900 C on structure, properties and tool life of an AlTiN coating under various cutting conditions. Surf Coat Technol 202(13):2985–2992CrossRefGoogle Scholar
  18. 18.
    Lotfian S et al (2012) High-temperature nanoindentation behavior of Al/SiC multilayers. Philos Mag Lett 92(8):362–367CrossRefGoogle Scholar
  19. 19.
    Lee WS, Liu TY, Chen TH (2009) Nanoindentation behaviour and microstructural evolution of Au/Cr/Si thin films. Mater Trans 50(7):1768–1777CrossRefGoogle Scholar
  20. 20.
    Beake BD, Fox-Rabinovich GS (2014) Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining. Surf Coat Tech 255(0):102–111 Google Scholar
  21. 21.
    Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21(3):725–736CrossRefGoogle Scholar
  22. 22.
    Lucas BN, Oliver WC (1999) Indentation power-law creep of high-purity indium. Metall Mater Trans A 30(3):601–610CrossRefGoogle Scholar
  23. 23.
    Milhans J et al (2011) Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures. J Power Sour 196(13):5599–5603CrossRefGoogle Scholar
  24. 24.
    Maier V et al (2013) An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J Mater Res 28(9):1177–1188CrossRefGoogle Scholar
  25. 25.
    Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82(10):2179–2186CrossRefGoogle Scholar
  26. 26.
    Schuh CA et al (2005) High temperature nanoindentation for the study of flow defects. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Skandani AA, Ctvrtlik R, Al-Haik M (2014) Nanocharacterization of the negative stiffness of ferroelectric materials. Appl Phys Lett 105(8):082906CrossRefGoogle Scholar
  28. 28.
    Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindentation—the importance of isothermal contact. Philos Mag 91(7–9):1221–1244CrossRefGoogle Scholar
  29. 29.
    Wheeler JM, Oliver RA, Clyne TW (2010) AFM observation of diamond indenters after oxidation at elevated temperatures. Diam Relat Mater 19(11):1348–1353CrossRefGoogle Scholar
  30. 30.
    Kulikovsky V et al (2014) Effect of air annealing on mechanical properties and structure of SiCxNy magnetron sputtered films. Surf Coat Technol 240:76–85CrossRefGoogle Scholar
  31. 31.
    Kulikovsky V et al (2008) Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films. Surf Coat Technol 202(9):1738–1745CrossRefGoogle Scholar
  32. 32.
    Atkins AG, Tabor D (1966) Hardness and deformation properties of solids at very high temperatures. Proc R Soc Lond A 292(1431):441–459CrossRefGoogle Scholar
  33. 33.
    Wachtman JB, Lam DG (1959) Young’s modulus of various refractory materials as a function of temperature. J Am Ceram Soc 42(5):254–260CrossRefGoogle Scholar
  34. 34.
    Kaiser A et al (1997) Hot hardness and creep of Si3N4SiC micro/nano- and nano/nano-composites. Nanostruct Mater 8(4):489–497CrossRefGoogle Scholar
  35. 35.
    Hirai T, Niihara K (1979) Hot hardness of SiC single crystal. J Mater Sci 14(9):2253–2255. doi: 10.1007/BF00688433 CrossRefGoogle Scholar
  36. 36.
    Li Z, Bradt RC (1988) The single crystal elastic constants of hexagonal SiC to 1000 C. Int J High Technol Ceram 4(1):1–10CrossRefGoogle Scholar
  37. 37.
    Pusch C et al (2011) Influence of the PVD sputtering method on structural characteristics of SiCN-coatings—Comparison of RF, DC and HiPIMS sputtering and target configurations. Surf Coat Technol 205(SUPPL. 2):S119–S123CrossRefGoogle Scholar
  38. 38.
    Hoche H et al (2010) Properties of SiCN coatings for high temperature applications—comparison of RF-, DC- and HPPMS-sputtering. Surf Coat Technol 205(SUPPL. 1):S21–S27CrossRefGoogle Scholar
  39. 39.
    Wheeler JM, Michler J (2013) Invited article: indenter materials for high temperature nanoindentation. Rev Sci Instrum 84(10):101301CrossRefGoogle Scholar
  40. 40.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  41. 41.
    Albe K (1997) Theoretical study of boron nitride modifications at hydrostatic pressures. Phys Rev B 55(10):6203–6210CrossRefGoogle Scholar
  42. 42.
    D’Evelyn MP, Taniguchi T (1999) Elastic properties of translucent polycrystalline cubic boron nitride as characterized by the dynamic resonance method. Diam Relat Mater 8(8–9):1522–1526CrossRefGoogle Scholar
  43. 43.
    Farnsworth PL, Coble RL (1966) Deformation behavior of dense polycrystalline SiC. J Am Ceram Soc 49(5):264–268CrossRefGoogle Scholar
  44. 44.
    Koester RD, Moak DP (1967) Hot Hardness of Selected Borides, Oxides, and Carbides to 1900 C. J Am Ceram Soc 50(6):290–296CrossRefGoogle Scholar
  45. 45.
    Hillel R et al (1993) Microstructure of chemically vapour codeposited SiCTiCC nanocomposites. Mater Sci Eng A 168(2):183–187CrossRefGoogle Scholar
  46. 46.
    Wada N et al (1981) Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4. J Non-Cryst Solids 43(1):7–15CrossRefGoogle Scholar
  47. 47.
    Basca WS et al (1993) Raman scattering of laser- deposited amorphous carbon. Phys Rev B 47:10931–10934CrossRefGoogle Scholar
  48. 48.
    Kulikovsky V et al (2003) Thermal stability of microhardness and internal stress of hard a-C films with predominantly sp2 bonds. Diam Relat Mater 12(8):1378–1384CrossRefGoogle Scholar
  49. 49.
    Vorlíček V et al (1996) C: N and C:N: O films: Preparation and properties. Diam Relat Mater 5(3–5):570–574CrossRefGoogle Scholar
  50. 50.
    Dosbaeva GK et al (2010) Oxide scales formation in nano-crystalline TiAlCrSiYN PVD coatings at elevated temperature. Int J Refract Metal Hard Mater 28(1):133–141CrossRefGoogle Scholar
  51. 51.
    Riedel R et al (1998) Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500 C. J Am Ceram Soc 81(12):3341–3344CrossRefGoogle Scholar
  52. 52.
    Goodall R, Clyne TW (2006) A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater 54(20):5489–5499CrossRefGoogle Scholar
  53. 53.
    Beake BD et al (2009) Coating optimisation for high speed machining with advanced nanomechanical test methods. Surf Coat Technol 203(13):1919–1925CrossRefGoogle Scholar
  54. 54.
    Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73(5):614–616CrossRefGoogle Scholar
  55. 55.
    Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R 44(4–5):91–150CrossRefGoogle Scholar
  56. 56.
    Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246(1–2):1–11CrossRefGoogle Scholar
  57. 57.
    Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63(9–10):574–581CrossRefGoogle Scholar
  58. 58.
    Galvan D, Pei YT, De Hosson JTM (2006) Deformation and failure mechanism of nano-composite coatings under nano-indentation. Surf Coat Technol 200(24):6718–6726CrossRefGoogle Scholar
  59. 59.
    Zhang S et al (2007) Hard yet tough nanocomposite coatings—present status and future trends. Plasma Processes Polym 4(3):219–228CrossRefGoogle Scholar
  60. 60.
    Zhang S et al (2005) Toughness measurement of thin films: a critical review. Surf Coat Technol 198(1–3):74–84CrossRefGoogle Scholar
  61. 61.
    Musil J et al (2002) Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf Coat Technol 154(2–3):304–313CrossRefGoogle Scholar
  62. 62.
    Marx V, Balke H (1997) A critical investigation of the unloading behavior of sharp indentation. Acta Mater 45(9):3791–3800CrossRefGoogle Scholar
  63. 63.
    Giannakopoulos AE, Suresh S (1999) Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater 40(10):1191–1198CrossRefGoogle Scholar
  64. 64.
    Choi IC et al (2012) Indentation creep revisited. J Mater Res 27(1):3–11CrossRefGoogle Scholar
  65. 65.
    Malzbender J, De With G (2000) Energy dissipation, fracture toughness and the indentation load-displacement curve of coated materials. Surf Coat Technol 135(1):60–68CrossRefGoogle Scholar
  66. 66.
    Firstov S et al (2012) Effect of small concentrations of oxygen and nitrogen on the structure and mechanical properties of sputtered titanium films. Surf Coat Technol 206(17):3580–3585CrossRefGoogle Scholar
  67. 67.
    Voevodin AA, Prasad SV, Zabinski JS (1997) Nanocrystalline carbide/amorphous carbon composites. J Appl Phys 82(2):855–858CrossRefGoogle Scholar
  68. 68.
    Joslin DL, Oliver WC (1990) New method for analyzing data from continuos depth-sensing microindentation tests. J Mater Res 5(1):123–126CrossRefGoogle Scholar
  69. 69.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Radim Ctvrtlik
    • 1
  • Marwan S. Al-Haik
    • 2
  • Valeriy Kulikovsky
    • 3
    • 4
  1. 1.RCPTM, Joint Laboratory of OpticsPalacky UniversityOlomoucCzech Republic
  2. 2.Department of Biomedical Engineering and MechanicsVirginia TechBlacksburgUSA
  3. 3.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  4. 4.Institute for Problems of Materials ScienceAcademy of Sciences of UkraineKievUkraine

Personalised recommendations