Journal of Materials Science

, Volume 50, Issue 3, pp 1457–1468 | Cite as

Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix

  • J. A. Gonzalez-Calderon
  • E. O. Castrejon-Gonzalez
  • F. J. Medellin-Rodriguez
  • Norbert Stribeck
  • A. Almendarez-Camarillo
Original Paper


This work proposes an alternative method for the functionalization of MWCNT with molecules of pimelic acid (PA) using an ionic bridging linkage. This bridged linkage increases the amount of β-crystal in isotactic polypropylene (iPP) matrix compared to that obtained with chelating linkages of the same molecule. Evidence of a lateral bridge between the PA and MWCNT components was obtained from infrared spectra of the functionalized carbon nanotubes (MWCNT-f). This fact was confirmed by the absence of a characteristic infrared band at 1540 cm−1, which was attributed to a particular chelating form of the PA, known as calcium pimelate (MWCNT-PS). Furthermore, an increase in the thermal stability of the attached PA due to ionic linkage was observed using differential scanning calorimetry (DSC) and thermo-gravimetric analysis. iPP nanocomposites were prepared with these MWCNT-f, yielding an improvement in the induction of β-phase within the nanocomposites; this finding was further corroborated by DSC and wide-angle X-ray diffraction analysis (WAXD). The relative content of β-crystals reaches a value as high as 85.7 % at a loading of 0.45 w/w % MWCNT-f, resulting in an increase in impact strength and the glass transition temperature (Tg), while the storage modulus decreased. In addition, the evolution of the crystallization activation energy of the resulting nanocomposites was investigated. We correlate the energy requirements of the interactions between nucleating agents and the segments of iPP. The bridged form of the molecule was associated with an increased energy barrier during the crystallization process due to both the thermodynamic instability of the β-crystal and the higher amount of induced β-crystal relative to the amount promoted by the chelated form. In this article, we demonstrate how the linkage type between MWCNT and PA components can strongly influence the ability of this organic molecule to nucleate β-crystal and can impact the crystallization behavior in iPP nanocomposites.


Differential Scanning Calorimetry WAXD Isothermal Crystallization Nucleate Agent Effective Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was financially supported by CONACYT (Project Nos. 78904 and 129962) and DGEST (Project No. 5207.14-P). The authors express their gratitude to Ch. E. Ana Lourdes Rodríguez Villanueva for experimental assistance in the WAXD measurements.

Supplementary material

10853_2014_8706_MOESM1_ESM.pdf (209 kb)
Online Resource Caption ESM_1. DSC curves (left) and X-ray diffraction patterns (right) of iPP nanocomposite, filled with 0.45 % w/w of MWCNT-COOH. Supplementary material 1 (PDF 209 kb)


  1. 1.
    Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) A novel montmorillonite with ß-nucleating surface for enhancing ß-crystallization of isotactic polypropylene. Compos Part A 49:1–8CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Wang C, Junping Z, Mai K (2012) ß-nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polym Int 61:818–824CrossRefGoogle Scholar
  3. 3.
    Jiang J, Li G, Tan N, Ding Q, Mai K (2012) Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator. Thermochim Acta 546:127–133CrossRefGoogle Scholar
  4. 4.
    Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K (2012) Crystallization behavior and melting characteristics of wollastonite filled β–isotactic polypropylene composites. Thermochim Acta 536:47–54CrossRefGoogle Scholar
  5. 5.
    Wang S-W, Yang W, Bao R-Y, Wang B, Xie B-H, Yang M-B (2010) The enhanced nucleating ability of carbon nanotube-supported ß-nucleating agent in isotactic polypropylene. Colloid Polym Sci 288:681–688CrossRefGoogle Scholar
  6. 6.
    Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967CrossRefGoogle Scholar
  7. 7.
    Li X, Keliang H, Ji M, Huang Y, Zhou G (2002) Calcium dicarboxylates nucleation of β polypropylene. J Appl Polym Sci 86:633–638CrossRefGoogle Scholar
  8. 8.
    Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol 3:151–156. doi: 10.1002/vnl.10182 CrossRefGoogle Scholar
  9. 9.
    Li JX, Cheung WL (1999) Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer 40:2085–2088CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Wang C, Meng Y, Mai K (2012) Synergistic effects of toughening of nano-CaCO and toughness of β-polypropylene. Compos Part A 43:189–197CrossRefGoogle Scholar
  11. 11.
    Gahleitner M, Grein C, Bernreitner K (2012) Synergistic mechanical effects of calcite micro- and nanoparticles and β-nucleation in polypropylene copolymers. Eur Polym J 48:49–59CrossRefGoogle Scholar
  12. 12.
    Meng M-R, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng, A 492:177–184CrossRefGoogle Scholar
  13. 13.
    Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Ouyang J, Yang H (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259. doi: 10.1016/j.clay.2014.04.019 CrossRefGoogle Scholar
  15. 15.
    Zhao S, Xu N, Xin Z, Jiang C (2012) A novel highly efficient β-nucleating agent for isotactic polypropylene. J Appl Polym Sci 123:108–117. doi: 10.1002/app.34441 CrossRefGoogle Scholar
  16. 16.
    Varga J (2002) Β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171. doi: 10.1081/MB-120013089 CrossRefGoogle Scholar
  17. 17.
    Lee C-YC, Hines AL (1987) Adsorption of glutaric, adipic, and pimelic acids on activated carbon. Chem Eng Data 32:395–397CrossRefGoogle Scholar
  18. 18.
    Xu J-Z, Zhong G-J, Hsiao BS et al (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39:555–593. doi: 10.1016/j.progpolymsci.2013.06.005 CrossRefGoogle Scholar
  19. 19.
    Assouline E, Lustiger A, Barber AH et al (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci, Part B 41:520–527. doi: 10.1002/polb.10394 CrossRefGoogle Scholar
  20. 20.
    Chen Y-H, Zhong G-J, Lei J et al (2011) In situ synchrotron X-ray scattering study on isotactic polypropylene crystallization under the coexistence of shear flow and carbon nanotubes. Macromolecules 44:8080–8092. doi: 10.1021/ma201688p CrossRefGoogle Scholar
  21. 21.
    Leelapornpisit W, Ton-That M-T, Perrin-Sarazin F et al (2005) Effect of carbon nanotubes on the crystallization and properties of polypropylene. J Polym Sci, Part B 43:2445–2453. doi: 10.1002/polb.20527 CrossRefGoogle Scholar
  22. 22.
    Miltner HE, Grossiord N, Lu K et al (2008) Isotactic polypropylene/carbon nanotube composites prepared by latex technology. thermal analysis of carbon nanotube-induced nucleation. Macromolecules 41:5753–5762. doi: 10.1021/ma800643j CrossRefGoogle Scholar
  23. 23.
    Xu J-Z, Chen C, Wang Y et al (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44:2808–2818. doi: 10.1021/ma1028104 CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya AR, Sreekumar T, Liu T et al (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377. doi: 10.1016/S0032-3861(03)00073-9 CrossRefGoogle Scholar
  25. 25.
    Marco C, Naffakh M, Gómez MA et al (2011) The crystallization of polypropylene in multiwall carbon nanotube-based composites. Polym Compos 32:324–333. doi: 10.1002/pc.21059 CrossRefGoogle Scholar
  26. 26.
    Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B 106:5852–5858. doi: 10.1021/jp014622y CrossRefGoogle Scholar
  27. 27.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Siokou A, Kallitsis I, Galiotis C, Tasis D (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  28. 28.
    Somphon Weenawan, Haller Kenneth J (2013) Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids. J Cryst Growth 362:252–258CrossRefGoogle Scholar
  29. 29.
    Blaine RL, Kissinger HE (2012) Homer kissinger and the kissinger equation. Thermochim Acta 540:1–6CrossRefGoogle Scholar
  30. 30.
    Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221CrossRefGoogle Scholar
  31. 31.
    Vyazovkin S (2002) Is the kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775CrossRefGoogle Scholar
  32. 32.
    Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195. doi: 10.1002/polc.5070060121 CrossRefGoogle Scholar
  33. 33.
    Nakamoto K (1978) Infrared and spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  34. 34.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  35. 35.
    Hao W, Yang W, Cai H, Huang Y (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533CrossRefGoogle Scholar
  36. 36.
    Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly(propylene suberate). Thermochim Acta 523:187–199CrossRefGoogle Scholar
  37. 37.
    Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3 or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103:319–327CrossRefGoogle Scholar
  38. 38.
    Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterisation. Polymer 42:7127–7135CrossRefGoogle Scholar
  39. 39.
    Jacoby P, Bersted BH, Kissel WJ, Smith E (1986) Studies on the β-crystalline form of isotactic polypropylene. J Polym Sci B 24:461–491CrossRefGoogle Scholar
  40. 40.
    Tjong SC, Shen SJ, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36:100–105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. A. Gonzalez-Calderon
    • 1
  • E. O. Castrejon-Gonzalez
    • 1
  • F. J. Medellin-Rodriguez
    • 2
  • Norbert Stribeck
    • 3
  • A. Almendarez-Camarillo
    • 1
  1. 1.Departamento de Ingeniería QuímicaInstituto Tecnológico de CelayaCelayaMexico
  2. 2.CIEP-FCQUASLPSan Luis PotosiMexico
  3. 3.Institute for Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations