Journal of Materials Science

, Volume 50, Issue 3, pp 1257–1266 | Cite as

Through-thickness permeability study of orthogonal and angle-interlock woven fabrics

Original Paper


Three-dimensional (3D) woven textiles, including orthogonal and angle-interlock woven fabrics, exhibit high inter-laminar strength in addition to good in-plane mechanical properties and are particularly suitable for lightweight structural applications. Resin transfer moulding (RTM) is a cost-effective manufacturing process for composites with 3D-woven reinforcement. With increasing preform thickness, the influence of through-thickness permeability on RTM processing of composites becomes increasingly significant. This study proposes an analytical model for prediction of the through-thickness permeability, based on Poiseuille’s law for hydraulic ducts approximating realistic flow channel geometries in woven fabrics. The model is applied to four 3D-woven fabrics and three 2D-woven fabrics. The geometrical parameters of the fabrics were characterized by employing optical microscopy. For validation, the through-thickness permeability was determined experimentally. The equivalent permeability of inter-yarn gaps was found to account for approximately 90 % of the through-thickness permeability for the analysed fabrics. The analytical predictions agree well with the experimental data of the seven fabrics.


  1. 1.
    Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. Taylor & Francis Group, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Krukenberg T, Paton R (1999) Resin transfer molding for aerospace structures. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  3. 3.
    Long A (2005) Design and manufacture of textile composites. Woodhead Publishing Limited, CambridgeCrossRefGoogle Scholar
  4. 4.
    Greene DL (1992) Energy-efficiency improvement potential of commercial aircraft. Ann Rev Energy Environ 17:537–573CrossRefGoogle Scholar
  5. 5.
    Zeng X, Brown LP, Endruweit A, Matveev M, Long AC (2014) Geometrical modelling of 3D-woven reinforcements for polymer composites: prediction of fabric permeability and composite mechanical properties. Compos A Appl Sci Manuf 56:150–160CrossRefGoogle Scholar
  6. 6.
    Hickey CMD, Bickerton S (2013) Cure kinetics and rheology characterization and modelling of ambient temperature curing epoxy resins for resin infusion/VARTM and wet layup application. J Mater Sci 48(2):690–701. doi:10.1007/s10853-012-6781-8 CrossRefGoogle Scholar
  7. 7.
    Endruweit A, Glover P, Head K, Long AC (2011) Mapping of the fluid distribution in impregnated reinforcement textiles using Magnetic Resonance Imaging: application and discussion. Compos Part A Appl Sci Manuf 42(10):1369–1379CrossRefGoogle Scholar
  8. 8.
    Grujicic M, Chittajallu KM, Shawn W (2006) Lattice Boltzmann method based computation of the permeability of the orthogonal plain-weave fabric preforms. J Mater Sci 41(23):7989–8000. doi:10.1007/s10853-006-0864-3 CrossRefGoogle Scholar
  9. 9.
    Mei CC, Vernescu B (2010) Homogenization methods for multiscale mechanics. World Scientific, Singapore, p 330CrossRefGoogle Scholar
  10. 10.
    Mogavero J, Advani SG (1997) Experimental investigation of flow through multi-layered preforms. Polym Compos 18(5):649–655CrossRefGoogle Scholar
  11. 11.
    Endruweit A, Long AC (2010) Analysis of compressibility and permeability of selected 3D-woven reinforcements. J Compos Mater 44(24):2833–2862CrossRefGoogle Scholar
  12. 12.
    Desplentere F, Lomov SV, Woerdeman DL, Verpoest I, Wevers M, Bogdanovich A (2005) Micro-CT characterization of variability in 3D textile architecture. Compos Sci Technol 65(13):1920–1930CrossRefGoogle Scholar
  13. 13.
    Badel P, Vidal-Salle E, Maire E, Boisse P (2008) Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos Sci Technol 68(12):2433–2440CrossRefGoogle Scholar
  14. 14.
    Mahadik Y, Brown KAR, Hallett SR (2010) Characterization of 3D-woven composite internal architecture and effect of compaction. Compos Part A Appl Sci Manuf 41(7):872–880CrossRefGoogle Scholar
  15. 15.
    Awal A, Ghosh SB, Sain M (2009) Development and morphological characterization of wood pulp reinforced biocomposite fibers. J Mater Sci 44(11):2876–2881. doi:10.1007/s10853-009-3380-4 CrossRefGoogle Scholar
  16. 16.
    Karahan M, Lomov SV, Bogdanovich AE, Mungalov D, Verpoest I (2010) Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite. Compos A Appl Sci Manuf 41(9):1301–1311CrossRefGoogle Scholar
  17. 17.
    Rocha RPA, Cruz ME (2010) Calculation of the permeability and apparent permeability of three-dimensional porous media. Transp Porous Media 83(2):349–373CrossRefGoogle Scholar
  18. 18.
    Gebart BR (1992) Permeability of unidirectional reinforcements for RTM. J Compos Mater 26(8):1101–1133CrossRefGoogle Scholar
  19. 19.
    Cai Z, Berdichevesky AL (1993) An improved self-consistent method for estimating the permeability of a fiber assembly. Polym Compos 14(4):314–323CrossRefGoogle Scholar
  20. 20.
    Bruschke MV, Advani SG (1993) Flow of generalized Newtonian fluids across a periodic array of cylinders. J Rheol 37(3):479–497CrossRefGoogle Scholar
  21. 21.
    Xiao X, Long A, Zeng X (2014) Through-thickness permeability modelling of woven fabric under out-of-plane deformation. J Mater Sci 49(21):7563–7574. doi:10.1007/s10853-014-8465-z CrossRefGoogle Scholar
  22. 22.
    Xiao X, Zeng X, Long AC, Cliford MJ, Lin H, Saldaeva E (2012) An analytical model for through-thickness permeability of woven fabric. Text Res J 82(5):492–501CrossRefGoogle Scholar
  23. 23.
    Zupin Z, Hladnik A, Dimitrovski K (2012) Prediction of one-layer woven fabrics air permeability using porosity parameters. Text Res J 82(2):117–128CrossRefGoogle Scholar
  24. 24.
    Mehaute B (1976) An introduction to hydrodynamics and water waves. Springer-Verlag, New York, p 16–22CrossRefGoogle Scholar
  25. 25.
    Sutera SP, Skalak R (1993) The history of Poiseuille’s law. Annu Rev Fluid Mech 25:1–19CrossRefGoogle Scholar
  26. 26.
    Advani SG, Bruschke MV, Parnas RS (1994) Resin transfer molding flow phenomena in polymeric composites, In ‘Flow and rheology in polymer composites manufacturing’. Elsevier science B. V, Amsterdam, p 56–78Google Scholar
  27. 27.
    Schlichting H, Gersten K (c2000) Boundary-layer theory. 8th edn, Springer, BerlinGoogle Scholar
  28. 28.
    Batchelor GK (c1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Papautsky I, Gale BK, Mohanty S, Ameel TA, Frazier AB (1999) Effects of rectangular microchannel aspect ratio on laminar friction constant. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 3877: 147–158Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.Division of Materials, Mechanics and Structures, Faculty of EngineeringUniversity of Nottingham, University ParkNottinghamUK

Personalised recommendations