Journal of Materials Science

, Volume 50, Issue 2, pp 662–677 | Cite as

Solid-state phase transformation kinetics in the near-equilibrium regime

  • Yi-Hui Jiang
  • Feng LiuEmail author
  • Jin-Cheng Wang
  • Zhong-Hua Zhang


Solid-state phase transformation kinetics in the near-equilibrium regime behaves differently from that in extremely non-equilibrium regime since their thermodynamic states are different. Incorporating temperature- and transformed fraction-dependent thermodynamic terms, a thermo-kinetic model is derived to describe the transformation kinetics in the near-equilibrium regime. The model predicts a sluggish stage in isothermally conducted transformation and a temperature-dependent stage in non-isothermally conducted transformation. Then, the kinetics of γ/α transformations in two binary substitutional Fe-based alloys (i.e. Fe-3.28 at.% Mn and Fe-1.73 at.% Co), measured by isothermal and non-isothermal dilatometry, is investigated by the newly proposed model. The model quantitatively describes the retarded isothermal kinetics in Fe-3.28 at.% Mn alloy and the abnormal non-isothermal kinetics in Fe-1.73 at.% Co alloy.


Transformation Kinetic Isothermal Transformation Continuous Nucleation Thermodynamic Term Gibbs Energy Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the financial support of the National Basic Research Program of China (973 Program, No. 2011CB610403), the Natural Science Foundation of China (Nos. 51134011 and 51431008), the Fundamental Research Fund of Northwestern Polytechnical University (No. JC20120223), the Doctorate Foundation of Northwestern Polytechnical University (No. CX201311), and the China National Funds for Distinguished Young Scientists (No. 51125002).


  1. 1.
    Christian JW (1975) The theory of transformation in metals and alloys, part1: equilibrium and general kinetics theory, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–458Google Scholar
  3. 3.
    Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  4. 4.
    Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  5. 5.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRefGoogle Scholar
  6. 6.
    Kolmogorov AN (1937) On statistical theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat 3:355–359Google Scholar
  7. 7.
    Mittemeijer EJ (1992) Analysis of the kinetics of phase transformations. J Mater Sci 27:3977–3987. doi: 10.1007/BF01105093 CrossRefGoogle Scholar
  8. 8.
    Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques. Acta Mater 44:4807–4813CrossRefGoogle Scholar
  9. 9.
    Ruitenberg G, Woldt E, Petford-Long AK (2001) Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta 378:97–105CrossRefGoogle Scholar
  10. 10.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci 37:1321–1332. doi: 10.1023/A:1014556109351 CrossRefGoogle Scholar
  11. 11.
    Farjas J, Roura P (2006) Modification of the Kolmogorov–Johnson–Mehl–Avrami rate equation for non-isothermal experiments and its analytical solution. Acta Mater 54:5573–5579CrossRefGoogle Scholar
  12. 12.
    Liu F, Sommer F, Mittemeijer EJ (2004) Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Mater 52:3207–3216CrossRefGoogle Scholar
  13. 13.
    Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52:193–212CrossRefGoogle Scholar
  14. 14.
    Liu YC, Sommer F, Mittemeijer E (2003) Abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater 51:507–519CrossRefGoogle Scholar
  15. 15.
    Chen H, Borgenstam A, Odqvist J, Zuazo I, Goune M, Ågren J, van der Zwaag S (2013) Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels. Acta Mater 61:4512–4523CrossRefGoogle Scholar
  16. 16.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) The kinetics of the austenite–ferrite phase transformation of Fe–Mn: differential thermal analysis during cooling. Acta Mater 50:3545–3555CrossRefGoogle Scholar
  17. 17.
    Jiang YH, Liu F, Song SJ (2012) An extended analytical model for solid-state phase transformation upon continuous heating and cooling processes: application in gamma/alpha transformation. Acta Mater 60:3815–3829CrossRefGoogle Scholar
  18. 18.
    Lange WF III, Enomoto M, Aaronson HI (1988) The kinetics of ferrite nucleation at austenite grain boundaries in Fe–C alloys. Metall Mater Trans A 19:427–440CrossRefGoogle Scholar
  19. 19.
    Liu YC, Sommer F, Mittemeijer EJ (2004) Kinetics of the abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater 52:2549–2560CrossRefGoogle Scholar
  20. 20.
    Inoue T, Wang ZG (1985) Coupling between stress, temperature, and metallic structures during processes involving phase transformations. Mater Sci Technol 1:845–850CrossRefGoogle Scholar
  21. 21.
    Denis S, Gautier E, Sjöström S, Simon A (1987) Influence of stresses on the kinetics of pearlitic transformation during continuous cooling. Acta Metall 35:1621–1632CrossRefGoogle Scholar
  22. 22.
    Schwarz RB, Khachaturyan AG (1995) Thermodynamics of open two-phase systems with coherent interfaces. Phys Rev Lett 74:2523–2526CrossRefGoogle Scholar
  23. 23.
    Khachaturyan AG, Semenovskaya S, Tsakalakos T (1995) Elastic strain energy of inhomogeneous solids. Phys Rev B 52:15909–15919CrossRefGoogle Scholar
  24. 24.
    Onink M, Tichelaar FD, Brakman CM, Mittemeijer EJ, van der Zwaag S (1995) An in situ hot stage transmission electron microscopy study of the decomposition of Fe–C austenites. J Mater Sci 30:6223–6234. doi: 10.1007/BF00369670 CrossRefGoogle Scholar
  25. 25.
    Kozeschnik E, Gamsjäger E (2006) High-speed quenching dilatometer investigation of the austenite-to-ferrite transformation in a low to ultralow carbon steel. Metall Mater Trans A 37:1791–1797CrossRefGoogle Scholar
  26. 26.
    Liu YC, Sommer F, Mittemeijer EJ (2006) The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion-to interface-controlled growth. Acta Mater 54:3383–3393CrossRefGoogle Scholar
  27. 27.
    Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425CrossRefGoogle Scholar
  28. 28.
    Shimotomai M, Maruta K, Mine K, Matsui M (2003) Formation of aligned two-phase microstructures by applying a magnetic field during the austenite to ferrite transformation in steels. Acta Mater 51:2921–2932CrossRefGoogle Scholar
  29. 29.
    Tong MM, Li DZ, Li YY (2004) Modelling the austenite–ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Mater 52:1155–1162CrossRefGoogle Scholar
  30. 30.
    Odqvist J, Sundman Ågren J (2003) A general method for calculating deviation from local equilibrium at phase interfaces. Acta Mater 51:1035–1043CrossRefGoogle Scholar
  31. 31.
    Hillert M (1999) Solute drag, solute trapping and diffusional dissipation of Gibbs energy. Acta Mater 47:4481–4505CrossRefGoogle Scholar
  32. 32.
    Chen H, van der Zwaag S (2014) A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe–C–M alloys. Acta Mater 72:1–12CrossRefGoogle Scholar
  33. 33.
    Hoffman JD (1958) Thermodynamic driving force in nucleation and growth processes. J Chem Phys 29:1192–1193CrossRefGoogle Scholar
  34. 34.
    Thompson CV, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 27:1855–1859CrossRefGoogle Scholar
  35. 35.
    Singh HB, Holz A (1983) Stability limit of supercooled liquids. Solid State Commun 45:985–988CrossRefGoogle Scholar
  36. 36.
    Song SJ, Liu F, Jiang YH, Wang HF (2011) Kinetics of solid-state transformation subjected to anisotropic effect: model and application. Acta Mater 59:3276–3286CrossRefGoogle Scholar
  37. 37.
    Porter DA, Easterling KE (1981) Phase transformation in metals and alloys. Van Nostrand Reinhold, New YorkGoogle Scholar
  38. 38.
    Hillert M, Höglund L (2006) Mobility of α/γ phase interfaces in Fe alloys. Scripta Mater 54:1259–1263CrossRefGoogle Scholar
  39. 39.
    Wits JJ, Kop TA, van Leeuwen Y, Seitsma J, van der Zwaag S (2000) A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys. Mater Sci Eng, A 283:234–241CrossRefGoogle Scholar
  40. 40.
    Lee BJ, Lee DN (1989) A thermodynamic study of the Mn–C and Fe–Mn systems. Calphad 13:345–354CrossRefGoogle Scholar
  41. 41.
    Brandes EA, Brook GB (1992) Smithells metals reference book, 7th edn. The Bath Press, BathGoogle Scholar
  42. 42.
    Jiang YH, Liu F, Song SJ, Sun B (2013) Evaluation of the maximum transformation rate for determination of impingement mode upon near-equilibrium solid-state phase transformation. Thermochim Acta 561:54–62CrossRefGoogle Scholar
  43. 43.
    Ohnuma I, Enoki H, Ikeda O, Kainuma R, Ohtani H, Sundman B, Ishida K (2002) Phase equilibria in the Fe–Co binary system. Acta Mater 50:379–393CrossRefGoogle Scholar
  44. 44.
    ASTME112-96 (1996) Standard test methods for determining average grain size. American Society for Testing Materials, annual book of ASTM standards, vol. 03.01, West Conshohocken, USAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi-Hui Jiang
    • 1
  • Feng Liu
    • 1
  • Jin-Cheng Wang
    • 1
  • Zhong-Hua Zhang
    • 2
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Steel Tube DivisionBaosteel Research InstituteShanghaiChina

Personalised recommendations