Journal of Materials Science

, Volume 50, Issue 1, pp 122–137 | Cite as

Insights into the structural, electronic, and magnetic properties of Fe2−x Ti x O3/Fe2O3 thin films with x = 0.44 grown on Al2O3 (0001)

  • Teresa Dennenwaldt
  • Maike Lübbe
  • Michael Winklhofer
  • Alexander Müller
  • Markus Döblinger
  • Hasan Sadat Nabi
  • Maria Gandman
  • Tzipi Cohen-Hyams
  • Wayne D. Kaplan
  • Wolfgang Moritz
  • Rossitza Pentcheva
  • Christina ScheuEmail author
Original Paper


The interface between hematite (α-Fe 2 III O3) and ilmenite (FeIITiO3), a weak ferrimagnet and an antiferromagnet, respectively, has been suggested to be strongly ferrimagnetic due to the formation of a mixed valence layer of Fe2+/Fe3+ (1:1 ratio) caused by compensation of charge mismatch at the chemically abrupt boundary. Here, we report for the first time direct experimental evidence for a chemically distinct layer emerging at heterointerfaces in the hematite—Ti-doped-hematite system. Using molecular beam epitaxy, we have grown thin films (~25 nm thickness) of α-Fe2O3 on α-Al2O3 (0001) substrates, which were capped with a ~25 nm thick Fe2−x Ti x O3 layer (x = 0.44). An additional 3 nm cap of α-Fe2O3 was deposited on top. The films were structurally characterized in situ with surface X-ray diffraction, which showed a partial low index orientation relationship between film and substrate in terms of the [0001] axis and revealed two predominant domains with \( (0001) _{{{\text{Fe}}_{2} {\text{O}}_{3} }} \;||\;(0001) _{{{\text{Al}}_{2} {\text{O}}_{3} }}, \) one with \( [10\bar{1}0]_{{{\text{Fe}}_{2} {\text{O}}_{3} }} \;||\;[10\bar{1}0]_{{{\text{Al}}_{2} {\text{O}}_{3} }}, \) and a twin domain with \( [01\bar{1}0]_{{{\text{Fe}}_{2} {\text{O}}_{3} }} \;||\;\;[10\bar{1}0]_{{{\text{Al}}_{2} {\text{O}}_{3} }}. \) Electron energy loss spectroscopy profiles across the Fe2−x Ti x O3/Fe2O3 interface show that Fe2+/Fe3+ ratios peak right at the interface. This strongly suggests the formation of a chemically distinct interface layer, which might also be magnetically distinct as indicated by the observed magnetic enhancement in the Fe2−x Ti x O3/α-Fe2O3/Al2O3 system compared to the pure α-Fe2O3/Al2O3 system.


Magnetite Hematite Ilmenite Orientation Relationship Electron Energy Loss Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors C.S. and A. M. would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support via the project SCHE634/12-1 within the priority program SPP1613. R.P., M.W. and W.M. acknowledge the DFG, Grant No PE883/4-1 (ESF EUROMISCI Program, Project MICROMAGN) and STA 1026/2-1. We thank Peter Gille and Renate Enders for their help with the preparation of the α-Al2O3 substrates, Matthias Opel and Rudolf Groß for measurement time on their SQUID magnetometer, and Alexander Gigler for help with the Raman measurements.

Supplementary material

10853_2014_8572_MOESM1_ESM.pdf (140 kb)
Supplementary material 1 (PDF 139 kb)


  1. 1.
    Nagata T, Akimoto S (1956) Magnetic properties of ferromagnetic ilmenites. Pure Appl Geophys 34:36–50CrossRefGoogle Scholar
  2. 2.
    Ishikawa Y, Akimoto S (1957) Magnetic properties of the FeTiO3–Fe2O3 solid solution series. J Phys Soc Jpn 12:1083–1098CrossRefGoogle Scholar
  3. 3.
    Ishikawa Y (1958) Electrical properties of FeTiO3–Fe2O3 solid solution series. J Phys Soc Jpn 13:37–42CrossRefGoogle Scholar
  4. 4.
    Pandey RK, Padmini P, Schad R et al (2009) Novel magnetic-semiconductors in modified iron titanates for radhard electronics. J Electroceramics 22:334–341CrossRefGoogle Scholar
  5. 5.
    Zhang P, Kleiman-Shwarsctein A, Hu Y-S et al (2011) Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ Sci 4:1020–1028CrossRefGoogle Scholar
  6. 6.
    Wang G, Ling Y, Wheeler DA et al (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509CrossRefGoogle Scholar
  7. 7.
    Lian X, Yang X, Liu S et al (2012) Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl Surf Sci 258:2307–2311CrossRefGoogle Scholar
  8. 8.
    Deng J, Zhong J, Pu A et al (2012) Ti-doped hematite nanostructures for solar water splitting with high efficiency. J Appl Phys 112:084312CrossRefGoogle Scholar
  9. 9.
    Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3. Acta Crystallogr B50:435–441CrossRefGoogle Scholar
  10. 10.
    Peng W, Zhu C, Zhu S et al (2013) Biomimetic fabrication of α-Fe2O3 with hierarchical structures as H2S sensor. J Mater Sci 48:4336–4344. doi: 10.1007/s10853-013-7249-1 CrossRefGoogle Scholar
  11. 11.
    El Sayed AM, Morsi WM (2014) α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J Mater Sci 49:5378–5387. doi: 10.1007/s10853-014-8245-9 CrossRefGoogle Scholar
  12. 12.
    Theissmann R, Fuess H, Tsuda K, Terauchi M (2009) A transmission electron microscopy study on the real structure of synthetic hematite. J Mater Sci 44:1421–1424. doi: 10.1007/s10853-007-1718-3 CrossRefGoogle Scholar
  13. 13.
    Harrison RJ, Redfern SAT, Smith RI (2000) In-situ study of the \( R\bar{3} \) to \( R\bar{3} \)c phase transition in the ilmenite-hematite solid solution using time-of-flight neutron powder diffraction. Am Mineral 85:194–205Google Scholar
  14. 14.
    Chiteme C, Mulaba-Bafubiandi AF (2006) An investigation on electrical properties of microwave treated natural ilmenite (FeTiO3). J Mater Sci 41:2365–2372. doi: 10.1007/s10853-006-1819-4 CrossRefGoogle Scholar
  15. 15.
    Butler WH, Bandyopadhyay A, Srinivasan R (2003) Electronic and magnetic structure of a 1000 K magnetic semiconductor: alpha-hematite (Ti). J Appl Phys 93:7882–7884CrossRefGoogle Scholar
  16. 16.
    Velev J, Bandyopadhyay A, Butler W, Sarker S (2005) Electronic and magnetic structure of transition-metal-doped α-hematite. Phys Rev B 71:205208CrossRefGoogle Scholar
  17. 17.
    Pentcheva R, Sadat Nabi H (2008) Interface magnetism in Fe2O3/FeTiO3 heterostructures. Phys Rev B 77:1–172405CrossRefGoogle Scholar
  18. 18.
    Droubay T, Rosso KM, Heald SM et al (2007) Structure, magnetism, and conductivity in epitaxial Ti-doped alpha-Fe2O3 hematite: experiment and density functional theory calculations. Phys Rev B 75:104412CrossRefGoogle Scholar
  19. 19.
    Zhou F, Kotru S, Pandey RK (2002) Pulsed laser-deposited ilmenite–hematite films for application in high-temperature electronics. Thin Solid Films 408:33–36CrossRefGoogle Scholar
  20. 20.
    Fujii T, Kayano M, Takada Y et al (2004) Ilmenite-hematite solid solution films for novel electronic devices. Solid State Ionics 172:289–292CrossRefGoogle Scholar
  21. 21.
    Hojo H, Fujita K, Tanaka K, Hirao K (2006) Room-temperature ferrimagnetic semiconductor 0.6FeTiO3·0.4Fe2O3 solid solution thin films. Appl Phys Lett 89:142503CrossRefGoogle Scholar
  22. 22.
    Dou J, Navarrete L, Kale P et al (2007) Preparation and characterization of epitaxial ilmenite-hematite films. J Appl Phys 101:053908CrossRefGoogle Scholar
  23. 23.
    Popova E, Warot-Fonrose B, Ndilimabaka H et al (2008) Systematic investigation of the growth and structural properties of FeTiO3±δ epitaxial thin films. J Appl Phys 103:093909CrossRefGoogle Scholar
  24. 24.
    Rode K, Gunning RD, Sofin RGS et al (2008) Magnetic anisotropy in ilmenite–hematite solid solution thin films grown by pulsed laser ablation. J Magn Magn Mater 320:3238–3241CrossRefGoogle Scholar
  25. 25.
    Takada Y, Nakanishi M, Fujii T et al (2008) Preparation and characterization of epitaxial Fe2−xTixO3 films with various Ti concentrations. J Appl Phys 104:033713CrossRefGoogle Scholar
  26. 26.
    Takada Y, Nakanishi M, Fujii T, Takada J (2008) Preparation and characterization of (001)- and (110)-oriented 0.6FeTiO3·0.4Fe2O3 films for room temperature magnetic semiconductors. Appl Phys Lett 92:252102CrossRefGoogle Scholar
  27. 27.
    Hojo H, Fujita K, Mizoguchi T et al (2009) Magnetic properties of ilmenite-hematite solid-solution thin films: direct observation of antiphase boundaries and their correlation with magnetism. Phys Rev B 80:1–075414CrossRefGoogle Scholar
  28. 28.
    Matoba T, Fujita K, Murai S, Tanaka K (2010) Low-temperature growth of highly crystallized FeTiO3-Fe2O3 solid solution thin films with smooth surface morphology. J Phys 200:062011Google Scholar
  29. 29.
    Fujii T, Sugano T, Nakanishi M, Takada J (2010) Structure and magnetic properties of Fe2O3-FeTiO3 films. J Phys 200:072029Google Scholar
  30. 30.
    Hamie A, Dumont Y, Popova E et al (2010) Structural, optical, and magnetic properties of the ferromagnetic semiconductor hematite-ilmenite Fe2−xTixO3−δ thin films on SrTiO3(001) prepared by pulsed laser deposition. J Appl Phys 108:093710CrossRefGoogle Scholar
  31. 31.
    Hamie A, Popova E, Dumont Y et al (2011) Epitaxial growth of the high temperature ferromagnetic semiconductor Fe1.5Ti0.5O3 on silicon-compatible substrate. Appl Phys Lett 98:232501CrossRefGoogle Scholar
  32. 32.
    Robinson P, Harrison RJ, Mcenroe SA, Hargraves RB (2002) Lamellar magnetism in the haematite—ilmenite series as an explanation for strong remanent magnetization. Nature 418:517–520CrossRefGoogle Scholar
  33. 33.
    Carmichael CM (1961) The magnetic properties of ilmenite–haematite crystals. Proc R Soc A 263:508–530CrossRefGoogle Scholar
  34. 34.
    Kasama T, Golla-Schindler U, Putnis A (2003) High-resolution and energy-filtered TEM of the interface between hematite and ilmenite exsolution lamellae : relevance to the origin of lamellar magnetism. Am Mineral 88:1190–1196Google Scholar
  35. 35.
    McEnroe SA, Carter-Stiglitz B, Harrison RJ et al (2007) Magnetic exchange bias of more than 1 Tesla in a natural mineral intergrowth. Nat Nanotechnol 2:631–634CrossRefGoogle Scholar
  36. 36.
    Fabian K, McEnroe SA, Robinson P, Shcherbakov VP (2008) Exchange bias identifies lamellar magnetism as the origin of the natural remanent magnetization in titanohematite with ilmenite exsolution from Modum, Norway. Earth Planet Sci Lett 268:339–353CrossRefGoogle Scholar
  37. 37.
    Sadat Nabi H, Pentcheva R (2009) Effect of strain on the stability and electronic properties of ferrimagnetic Fe2−xTixO3 heterostructures from correlated band theory. J Appl Phys 106:073912CrossRefGoogle Scholar
  38. 38.
    Harrison RJ, McEnroe SA, Robinson P et al (2007) Low-temperature exchange coupling between Fe2O3 and FeTiO3: insight into the mechanism of giant exchange bias in a natural nanoscale intergrowth. Phys Rev B 76:174436CrossRefGoogle Scholar
  39. 39.
    Shcherbakov VP, Fabian K, McEnroe SA (2009) Mechanism of exchange bias for isolated nanoparticles embedded in an antiferromagnetic matrix. Phys Rev B 80:174419CrossRefGoogle Scholar
  40. 40.
    Sadat Nabi H, Harrison RJ, Pentcheva R (2010) Magnetic coupling parameters at an oxide–oxide interface from first principles: Fe2O3–FeTiO3. Phys Rev B 81:214432CrossRefGoogle Scholar
  41. 41.
    Bocher L, Popova E, Nolan M et al (2013) Direct evidence of Fe2+–Fe3+ charge ordering in the ferrimagnetic hematite-ilmenite Fe1.35Ti0.65O3-δ Thin Films. Phys Rev Lett 111:167202CrossRefGoogle Scholar
  42. 42.
    Lübbe M, Gigler AM, Stark RW, Moritz W (2010) Identification of iron oxide phases in thin films grown on Al2O3(0001) by Raman spectroscopy and X-ray diffraction. Surf Sci 604:679–685CrossRefGoogle Scholar
  43. 43.
    Lübbe M (2009) Präparation und magnetische Eigenschaften dünner Fe2O3- und FeTi1−xO3-Schichten auf Al2O3(0001). Dissertation, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  44. 44.
    Balachandran U, Siegel RW, Liao YX, Askew TR (1995) Synthesis, sintering, and magnetic of nanophase Cr2O3 properties. NanoStruct Mater 5:505–512CrossRefGoogle Scholar
  45. 45.
    Albrecht M, Antesberger H, Moritz W et al (1999) Six-circle diffractometer for surface diffraction using an in-vacuum x-ray detector. Rev Sci Instrum 70:3239–3243CrossRefGoogle Scholar
  46. 46.
    Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) TEM specimen preparation of semiconductor–PMMA–metal interfaces. Mater Charact 59:1623–1629CrossRefGoogle Scholar
  47. 47.
    Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 3rd edn. Springer, New York, p 491CrossRefGoogle Scholar
  48. 48.
    Brydson R (2001) Electron energy loss spectroscopy, 1st edn. BIOS Scientific Publishers Limited, Oxford, p 137Google Scholar
  49. 49.
    Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer, New York, p 760CrossRefGoogle Scholar
  50. 50.
    Aronniemi M, Lahtinen J, Hautojärvi P (2004) Characterization of iron oxide thin films. Surf Interface Anal 36:1004–1006CrossRefGoogle Scholar
  51. 51.
    Gao Y, Kim YJ, Chambers SA, Bai G (1997) Synthesis of epitaxial films of Fe3O4 and α-Fe2O3 with various low-index orientations by oxygen-plasma-assisted molecular beam epitaxy. J Vac Sci Technol A 15:332–339CrossRefGoogle Scholar
  52. 52.
    Oh SH, Scheu C, Wagner T, Rühle M (2007) Control of bonding and epitaxy at copper/sapphire interface. Appl Phys Lett 91:141912CrossRefGoogle Scholar
  53. 53.
    Hojo H, Fujita K, Ikeno H et al (2014) Magnetic structures of FeTiO3-Fe2O3 solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations. Appl Phys Lett 104:112408CrossRefGoogle Scholar
  54. 54.
    Colliex C, Manoubi T, Ortiz C (1991) Electron-energy-loss-spectroscopy near-edge fine-structures in the iron-oxygen system. Phys Rev B 44:11402–11411CrossRefGoogle Scholar
  55. 55.
    Van Aken PA, Liebscher B (2002) Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe-L-2,3 electron energy-loss near-edge spectra. Phys Chem Miner 29:188–200CrossRefGoogle Scholar
  56. 56.
    Otten MT, Miner B, Rask JH, Buseck PR (1985) The determination of Ti, Mn and Fe oxidation states in minerals by electron energy-loss spectroscopy. Ultramicroscopy 18:285–289CrossRefGoogle Scholar
  57. 57.
    Van Aken PA, Liebscher B, Styrsa VJ (1998) Quantitative determination of iron oxidation states in minerals using Fe-L-2,3-edge electron energy-loss near-edge structure spectroscopy. Phys Chem Miner 25:323–327CrossRefGoogle Scholar
  58. 58.
    Bødker F, Hansen M, Bender Koch C et al (2000) Magnetic properties of hematite nanoparticles. Phys Rev B 61:6826–6838CrossRefGoogle Scholar
  59. 59.
    Kakol Z, Honig JM (1989) Influence of deviations from ideal stoichiometry on the anisotropy parameters of magnetite Fe3(1−δ)O4. Phys Rev B 40:9090–9097CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Teresa Dennenwaldt
    • 1
    • 5
  • Maike Lübbe
    • 2
  • Michael Winklhofer
    • 2
  • Alexander Müller
    • 1
    • 5
  • Markus Döblinger
    • 1
  • Hasan Sadat Nabi
    • 2
  • Maria Gandman
    • 3
  • Tzipi Cohen-Hyams
    • 4
  • Wayne D. Kaplan
    • 4
  • Wolfgang Moritz
    • 2
  • Rossitza Pentcheva
    • 2
    • 6
  • Christina Scheu
    • 1
    • 5
    Email author
  1. 1.Department of Chemistry and Center for NanoScienceLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Department of Earth and Environmental Sciences and Center for NanoscienceLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Department of Materials Science and Engineering 210 Hearst Memorial Mining BuildingUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Materials Science and EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
  5. 5.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  6. 6.Faculty of PhysicsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations