Advertisement

Journal of Materials Science

, Volume 49, Issue 23, pp 8040–8050 | Cite as

Combination of biological mechanisms for a concept study of a fracture-tolerant bio-inspired ceramic composite material

  • Heide Humburg
  • Eike Volkmann
  • Dietmar Koch
  • Jörg Müssig
Original Paper

Abstract

The biological materials nacre and wood are renowned for their impressive combination of toughness and strength. The key mechanisms of these highly complex structures are crack deflection at weak interfaces, crack bridging, functional gradients and reinforcing elements. These principles were applied to a more fracture-tolerant model material which combined porous stiff ceramic layers, manufactured by freeze casting, infiltrated and bonded by a polymer phase reinforced with fabric layers. In the hybrid composites, crack deflection occurred at the ceramic–fabric interface and the intact fabric layers served as crack-bridging elements. Fabric-reinforced epoxy layers stabilized the fracture behaviour and delayed catastrophic failure of the material. The influence of the different components was analysed by varying the ceramic, fabric and interface properties. More ductile fabrics lead to larger strain to failure and more crack bridging but reduced the composite strength and stiffness after initial cracking. Higher elastic mismatch between the components improved crack deflection and bridging but resulted in deterred load transfer and a lower strength. The stiffness and strength of the ceramic layers influenced the elastic properties of the laminar composite and the initial crack resistance. Flaw tolerance was increased with polymer infiltration. We show with our hybrid ceramic–fabric composite as a bio-inspired concept study how fracture toughness, work of fracture and tolerance for cracking can be tailored when the contributing factors, i.e. the ceramic, the fabric and their interface, are modified.

Keywords

Fabric Layer Hybrid Composite Ceramic Layer Crack Deflection Ceramic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Mr. Rudolf Einsiedel, Cordenka GmbH (Obernburg, Germany) for kindly providing the Cordenka textiles used in this study. The authors would like to thank Professor Dr.-Ing. Kurosch Rezwan, Advanced Ceramics group at the University of Bremen, Germany, for his support. The authors are grateful to Lisa Husemann and Lena Schäfer for helpful discussions.

References

  1. 1.
    Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55(2):306–337CrossRefGoogle Scholar
  2. 2.
    Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334CrossRefGoogle Scholar
  3. 3.
    Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: Structure and mechanical properties. Prog Mater Sci 53(1):1–206CrossRefGoogle Scholar
  4. 4.
    Barthelat F, Espinosa H (2007) An experimental investigation of deformation and fracture of nacre: mother of pearl. Exp Mech 47(3):311–324CrossRefGoogle Scholar
  5. 5.
    Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Zhang YW, Gao (2010) On optimal hierarchy of load-bearing biological materials. Proc R Soc B 278:519–525CrossRefGoogle Scholar
  7. 7.
    Corni I, Harvey TJ, Wharton JA, Stokes KR, Walsh FC, Wood RJK (2012) A review of experimental techniques to produce a nacre-like structure. Bioinspir Biomim 7(3):031001CrossRefGoogle Scholar
  8. 8.
    Launey ME, Munch E, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2010) A novel biomimetic approach to the design of high-performance ceramic-metal composites. J R Soc Interface 7(46):741–753CrossRefGoogle Scholar
  9. 9.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough. Bioinspir Hybrid Mater Sci 322(5907):1516–1520Google Scholar
  10. 10.
    Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866):1069–1073CrossRefGoogle Scholar
  11. 11.
    Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413–418CrossRefGoogle Scholar
  12. 12.
    Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M et al (2012) Biomimetic layer-by-layer assembly of artificial nacre. Nat Commun 3:966CrossRefGoogle Scholar
  13. 13.
    Wei H, Ma N, Shi F, Wang Z, Zhang X (2007) Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata. Chem Mater 19(8):1974–1978CrossRefGoogle Scholar
  14. 14.
    Walther A, Bjurhager I, Malho JM, Pere J, Ruokolainen J, Berglund LA et al (2010) Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett 10(8):2742–2748CrossRefGoogle Scholar
  15. 15.
    Barthelat F (2010) Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir Biomim 5(3):035001CrossRefGoogle Scholar
  16. 16.
    Mayer G (2006) New classes of tough composite materials: lessons from natural rigid biological systems. Mater Sci Eng C 26(8):1261–1268CrossRefGoogle Scholar
  17. 17.
    Rabiei R, Bekah S, Barthelat F (2010) Failure mode transition in nacre and bone-like materials. Acta Biomater 6(10):4081–4089CrossRefGoogle Scholar
  18. 18.
    Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16:2485–2493CrossRefGoogle Scholar
  19. 19.
    Barthelat F (2007) Biomimetics for next generation materials. Phil Trans R Soc A 365:2907–2919CrossRefGoogle Scholar
  20. 20.
    Evans A, Suo Z, Wang R, Aksay I, He M, Hutchinson J (2001) Model for the robust mechanical behavior of nacre. J Mater Res 16(9):2475–2484CrossRefGoogle Scholar
  21. 21.
    Li X, Xu ZH, Wang R (2006) In Situ Observation of nanograin rotation and deformation in nacre. Nano Lett 6(10):2301–2304CrossRefGoogle Scholar
  22. 22.
    Ashby MF, Easterling KE, Harrysson R, Maiti SK (1985) The fracture and toughness of woods. Proc R Soc Lond A 398(1815):261–280CrossRefGoogle Scholar
  23. 23.
    Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93(10):1391–1401CrossRefGoogle Scholar
  24. 24.
    Cutler WA, Zok FW, Lange FF, Charalambides PG (1997) Delamination resistance of two hybrid ceramic-composite laminates. J Am Ceram Soc 80(12):3029–3037CrossRefGoogle Scholar
  25. 25.
    Cook J, Gordon JE, Evans CC, Marsh DM (1964) A mechanism for the control of crack propagation in all-brittle systems. Proc Roy Soc Lond A 282(1391):508–520CrossRefGoogle Scholar
  26. 26.
    Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) A simple way to make tough ceramics. Nature 347(6292):455–457CrossRefGoogle Scholar
  27. 27.
    Evans AG, Ruhle M, Dalgleish BJ, Charalambides PG (1990) The fracture energy of bimaterial interfaces. Met Trans A 21(9):2419–2429CrossRefGoogle Scholar
  28. 28.
    Folsom CA, Zok FW, Lange FF, Marshall DB (1992) Mechanical-behavior of a laminar ceramic fiber-reinforced epoxy composite. J Am Ceram Soc 75(11):2969–2975CrossRefGoogle Scholar
  29. 29.
    Folsom CA, Zok FW, Lange FF (1994) Flexural properties of brittle multilayer materials. 1. Modeling. J Am Ceram Soc 77(3):689–696CrossRefGoogle Scholar
  30. 30.
    Folsom CA, Zok FW, Lange FF (1994) Flexural properties of brittle multilayer materials. 2. Experiments. J Am Ceram Soc 77(8):2081–2087CrossRefGoogle Scholar
  31. 31.
    Koch D, Andresen L, Schmedders T, Grathwohl G (2003) Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. J Sol-Gel Sci Technol 26(1):149–152CrossRefGoogle Scholar
  32. 32.
    Tomsia AP, Saiz E, Deville S (2007) Artificial bone and teeth through controlled ice growth in colloidal suspensions. AIP Conf Proc 916(1):560–572CrossRefGoogle Scholar
  33. 33.
    Kendall K (1975) Thin-film peeling-the elastic term. J Phys D 8:1449–1452CrossRefGoogle Scholar
  34. 34.
    D’Souza AS, Pantano CG (1999) Mechanisms for silanol formation on amorphous silica fracture surfaces. J Am Ceram Soc 82(5):1289–1293CrossRefGoogle Scholar
  35. 35.
    He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25(9):1053–1067CrossRefGoogle Scholar
  36. 36.
    Sarikaya M, Gunnison KE, Yasrebi M, Aksay IA (1989) Mechanical property-microstructural relationships in abalone shell. MRS Proc 174:109CrossRefGoogle Scholar
  37. 37.
    Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13:508–514CrossRefGoogle Scholar

Engineering Standards

  1. 38.
    ISO 527-4:1997: Plastics- Determination of tensile properties - Part 4: Test conditions for isotropic and anisotropic fibre-reinforced plastic compositesGoogle Scholar
  2. 39.
    DIN EN ISO 15732:2004: Hochleistungskeramik- Prüfverfahren für die Bestimmung der Bruchzähigkeit monolithischer Keramik, in GermanGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Heide Humburg
    • 1
  • Eike Volkmann
    • 2
  • Dietmar Koch
    • 3
  • Jörg Müssig
    • 1
  1. 1.Department of Biomimetics/The Biological Materials GroupHochschule Bremen – University of Applied SciencesBremenGermany
  2. 2.Advanced Ceramics GroupUniversity of BremenBremenGermany
  3. 3.Department of Ceramic Composites and Structures, Institute of Structures and DesignGerman Aerospace CenterStuttgartGermany

Personalised recommendations