Advertisement

Journal of Materials Science

, Volume 49, Issue 20, pp 7309–7316 | Cite as

Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields

  • Dae Sung Jang
  • Wen Ling Zhang
  • Hyoung Jin ChoiEmail author
Article

Abstract

Conducting polypyrrole (PPy)-wrapped halloysite nanotube (HNT) nanocomposites (PPy/HNT) were prepared using an in situ polymerization process of pyrrole monomer in the presence of a HNT dispersion, and its electrorheological (ER) properties were investigated under applied electric fields. The morphology of both HNT and PPy/HNT nanocomposite was examined by scanning electron microscopy and transmission electron microscopy. The synthesized PPy/HNT nanocomposites were also analyzed using a physisorption analyzer, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The ER properties of the PPy/HNT nanocomposite dispersed in silicone oil measured using a rotational rheometer under different electric field strengths exhibited ER behaviors of shear stress, dynamic moduli, and relaxation modulus with a change in slope from 1.5 to 1.0.

Keywords

Shear Rate Electric Field Strength Applied Electric Field Rotational Rheometer Nanocomposite Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Korea (2013) through Dongbu C&I.

References

  1. 1.
    Wei C, Zhu Y, Yang X, Li C (2007) One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior. Mater Sci Eng B 137:213–216CrossRefGoogle Scholar
  2. 2.
    Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412CrossRefGoogle Scholar
  3. 3.
    Liu F, Xu G, Wu J, Cheng Y, Guo J, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polym Sci 288:1739–1744CrossRefGoogle Scholar
  4. 4.
    Zhang WL, Choi HJ (2011) Fast and facile fabrication of a graphene oxide/titania nanocomposite and its electro-responsive characteristics. Chem Commun 47:12286–12288CrossRefGoogle Scholar
  5. 5.
    Cheng Q, Pavlinek V, He Y, Yan Y, Li C, Saha P (2011) Synthesis and electrorheological characteristics of sea urchin-like TiO2 hollow spheres. Colloid Polym Sci 289:799–805CrossRefGoogle Scholar
  6. 6.
    Zhang WL, Choi HJ (2012) Fabrication of semiconducting polyaniline-wrapped halloysite nanotube composite and its electrorheology. Colloid Polym Sci 290:1743–1748CrossRefGoogle Scholar
  7. 7.
    Li L, Yan F, Xue G (2004) Preparation of a porous conducting polymer film by electrochemical synthesis–solvent extraction method. J Appl Polym Sci 91:303–307CrossRefGoogle Scholar
  8. 8.
    Yan F, Xue G, Wan F (2002) A flexible giant magnetoresistance sensor prepared completely by electrochemical synthesis. J Mater Chem 12:2606–2608CrossRefGoogle Scholar
  9. 9.
    Weng B, Shepherd R, Chen J, Wallace GG (2011) Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation. J Mater Chem 21:1918–1924CrossRefGoogle Scholar
  10. 10.
    Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6:801–810CrossRefGoogle Scholar
  11. 11.
    Yoon DJ, Kim YD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole–silica–methylcellulose nanocomposite suspension. J Colloid Interf Sci 303:573–578CrossRefGoogle Scholar
  12. 12.
    Yang C, Liu P, Zhao Y (2010) Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 55:6857–6864CrossRefGoogle Scholar
  13. 13.
    Rao Y, Pochan JM (2007) Mechanics of polymer-clay nanocomposites. Macromolecules 40:290–296CrossRefGoogle Scholar
  14. 14.
    Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977CrossRefGoogle Scholar
  15. 15.
    Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44:191–196CrossRefGoogle Scholar
  16. 16.
    Remškar M (2004) Inorganic nanotubes. Adv Mater 16:1497–1504CrossRefGoogle Scholar
  17. 17.
    Liu Y, Nan H, Cai Q, Li H (2012) Fabrication of halloysite@ polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRefGoogle Scholar
  18. 18.
    Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRefGoogle Scholar
  19. 19.
    Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interf 5:10559–10564CrossRefGoogle Scholar
  20. 20.
    Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R (2010) Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal A 381:267–273CrossRefGoogle Scholar
  21. 21.
    Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. ACS Appl Mater Interf 5:4464–4471Google Scholar
  22. 22.
    Dong Y, Chaudhary D, Haroosh H, Bickford T (2011) Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. J Mater Sci 46:6148–6153. doi: 10.1007/s10853-011-5605-6 CrossRefGoogle Scholar
  23. 23.
    Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRefGoogle Scholar
  24. 24.
    Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Halloysite nanotubes as biomimetic nanoreactors. Small 1:510–513CrossRefGoogle Scholar
  25. 25.
    Antill SJ (2003) Halloysite: a low-cost alternative. Aust J Chem 56:723CrossRefGoogle Scholar
  26. 26.
    Liu Y, Cai Q, Li H, Zhang J (2013) Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template-like method. J Appl Polym Sci 128:517–522CrossRefGoogle Scholar
  27. 27.
    Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed Engl 41:2446–2461CrossRefGoogle Scholar
  28. 28.
    Sun T, Liu H, Song W, Wang X, Jiang L, Li L, Zhu D (2004) Responsive aligned carbon nanotubes. Angew Chem Int Ed Engl 43:4663–4666CrossRefGoogle Scholar
  29. 29.
    Rozynek Z, Knudsen KD, Fossum JO, Meheust Y, Wang B, Zhou M (2010) J Phys 22:324104Google Scholar
  30. 30.
    Cheah K, Forsyth M, Truong VT (1998) Ordering and stability in conducting polypyrrole. Synth Met 94:215–219CrossRefGoogle Scholar
  31. 31.
    Jang JS, Yoon HS (2004) Novel fabrication of size-tunable silica nanotubes using a reverse-microemulsion-mediated sol–gel method. Adv Mater 16:799–802CrossRefGoogle Scholar
  32. 32.
    Nicolini KP, Fukamachi CRB, Wypych F, Mangrich AS (2009) Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interface Sci 338:474–479CrossRefGoogle Scholar
  33. 33.
    Park DP, Lim ST, Lim JY, Choi HJ, Choi SB (2009) Electrorheological characteristics of solvent-cast polypyrrole/clay nanocomposite. J Appl Polym Sci 112:1365–1371CrossRefGoogle Scholar
  34. 34.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713CrossRefGoogle Scholar
  35. 35.
    Kaushal M, Joshi YM (2011) Self-similarity in electrorhological behavior. Soft Matter 7:9051–9060CrossRefGoogle Scholar
  36. 36.
    Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrotheological fluid in shear flow. Langmuir 27:5814–5823CrossRefGoogle Scholar
  37. 37.
    Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488CrossRefGoogle Scholar
  38. 38.
    Wang B, Zhou M, Rozynek Z, Fossum JO (2009) Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability. J Mater Chem 19:1816–1828CrossRefGoogle Scholar
  39. 39.
    Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. II. Extension beyond the point–dipole limit. J Chem Phys 94:6170–6178CrossRefGoogle Scholar
  40. 40.
    Parmar KPS, Méheust Y, Schjelderupsen B, Fossum JO (2008) Electrorheological suspensions of laponite in oil: rheometry studies. Langmuir 24:1814–1822CrossRefGoogle Scholar
  41. 41.
    Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Morphology of EVA based nanocomposites under shear and extensional flow. Polym Eng Sci 44:1220–1230CrossRefGoogle Scholar
  42. 42.
    Schwarzl FL (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dae Sung Jang
    • 1
  • Wen Ling Zhang
    • 1
  • Hyoung Jin Choi
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations