Journal of Materials Science

, Volume 49, Issue 20, pp 6845–6854 | Cite as

Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery

  • Hang Sun
  • Ping She
  • Guolong Lu
  • Kongliang Xu
  • Wei Zhang
  • Zhenning Liu


Carbon nanotubes (CNTs) possess unique physical and chemical properties and can serve as a platform for transporting a variety of bioactive molecules, such as drugs, proteins, and genes, given appropriate surface modifications. Here, we present an overview of the progress in applying CNTs as therapeutic agent carriers. Drugs can be attached to CNTs either through supramolecular chemistry to form noncovalent assembly or via covalent linkage to the functional groups preinstalled on CNTs. In addition to surface loading, packing of molecules inside the internal cavity of CNTs to protect less stable entities has also been achieved. Besides drugs, the high specific surface area of CNTs can also allow the installation of multiple molecules with different functions, e.g. target recognition and optical imaging, simultaneously to achieve synergistic effects. The drug release process tends to be gradual and sustained after being attached to CNTs, and could be tuned by various factors, such as pH, diameter of CNTs, and target recognition. The content throughout this review is mainly focused on the different protocols of loading drugs onto or into CNTs as well as how to control the drug release.


Gemcitabine Drug Release Folate Receptor Internal Cavity Succinic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Natural Science Foundation of China (51302103 and 51375204), Jilin Provincial Science & Technology Department (20140520101JH, 20140520163JH and 20140101056JC), Talent Development Fund of Jilin Province (Grant number JTF[2012]04), and Fundamental Research Fund of Jilin University (JLU[2011]450060445670).


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRefGoogle Scholar
  3. 3.
    Adeli M, Soleyman R, Beiranvand Z, Madani F (2013) Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions. Chem Soc Rev 42:5231–5256CrossRefGoogle Scholar
  4. 4.
    Dresselhaus M, Dai H (2004) Carbon nanotubes: continued innovations and challenges. MRS Bull 29:237–239Google Scholar
  5. 5.
    Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679CrossRefGoogle Scholar
  6. 6.
    Allen TM (1996) Liposomal drug delivery. Curr Opin Colloid Interface Sci 1:645–651CrossRefGoogle Scholar
  7. 7.
    Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713CrossRefGoogle Scholar
  8. 8.
    Schafer F, Qian S, Buettner G (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol 46:657–662Google Scholar
  9. 9.
    Becker ML, Fagan JA, Gallant ND, Bauer BJ, Bajpai V, Hobbie EK, Lacerda SH, Migler KB, Jakupciak JP (2007) Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv Mater 19:939–945CrossRefGoogle Scholar
  10. 10.
    Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107:13838–13842CrossRefGoogle Scholar
  11. 11.
    Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113CrossRefGoogle Scholar
  12. 12.
    Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128:6292–6293CrossRefGoogle Scholar
  13. 13.
    Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493CrossRefGoogle Scholar
  14. 14.
    Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRefGoogle Scholar
  15. 15.
    Zhang W, Sprafke JK, Ma M, Tsui EY, Sydlik SA, Rutledge GC, Swager TM (2009) Modular functionalization of carbon nanotubes and fullerenes. J Am Chem Soc 131:8446–8454CrossRefGoogle Scholar
  16. 16.
    Zhang W, Swager TM (2007) Functionalization of single-walled carbon nanotubes and fullerenes via a dimethyl acetylenedicarboxylate-4-dimethylaminopyridine zwitterion approach. J Am Chem Soc 129:7714–7715CrossRefGoogle Scholar
  17. 17.
    Peng H, Alemany L, Margrave JL, Khabashesku VN (2003) Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 125:15174–15182CrossRefGoogle Scholar
  18. 18.
    Menard-Moyon C, Dumas F, Doris E, Mioskowski C (2006) Functionalization of single-wall carbon nanotubes by tandem high-pressure/Cr(CO)6 activation of Diels–Alder cycloaddition. J Am Chem Soc 128:14764–14765CrossRefGoogle Scholar
  19. 19.
    Bahr J, Yang J, Kosynkin D, Bronikowski M, Smalley R, Tour J (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542CrossRefGoogle Scholar
  20. 20.
    Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRefGoogle Scholar
  21. 21.
    Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRefGoogle Scholar
  22. 22.
    Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56CrossRefGoogle Scholar
  23. 23.
    Zeng L, Alemany LB, Edwards CL, Barron AR (2008) Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: side chain length dependence on the observation of the sidewall SP3 carbons. Nano Res 1:72–88CrossRefGoogle Scholar
  24. 24.
    Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 42:1182–1184Google Scholar
  25. 25.
    Liu Z, Tabakman SM, Chen Z, Dai HJ (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4:1372–1382CrossRefGoogle Scholar
  26. 26.
    Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68CrossRefGoogle Scholar
  27. 27.
    Liu Z, Chen K, Davis C (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660CrossRefGoogle Scholar
  28. 28.
    Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750CrossRefGoogle Scholar
  29. 29.
    Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–8439CrossRefGoogle Scholar
  30. 30.
    Li-Boucetta H, Al-Jamal K, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 44:459–461Google Scholar
  31. 31.
    Lay C, Liu H, Tan H, Liu Y (2010) Delivry of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology 21:065101CrossRefGoogle Scholar
  32. 32.
    Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannonqbua S (2011) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system. J Mol Graph Model 29:591–596CrossRefGoogle Scholar
  33. 33.
    Hampel S, Kunze D, Haase D (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3:175–182CrossRefGoogle Scholar
  34. 34.
    Chen JY, Chen SY, Zhao XR, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785CrossRefGoogle Scholar
  35. 35.
    Wu W, Wieckowski S, Pastorin G, Klumpp C, Benincasa M, Briand J, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells using functionalised carbon nanotubes. Angew Chem Int Ed 44:6358–6362CrossRefGoogle Scholar
  36. 36.
    Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316CrossRefGoogle Scholar
  37. 37.
    Dhar S, Liu Z, Thomale J, Dai HJ, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130:11467–11476CrossRefGoogle Scholar
  38. 38.
    Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 45:4447–4449Google Scholar
  39. 39.
    McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189CrossRefGoogle Scholar
  40. 40.
    Lovell J, Liu T, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857CrossRefGoogle Scholar
  41. 41.
    Zhu Z, Tang ZW, Phillips JA, Yang RH, Wang H, Tan WH (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857CrossRefGoogle Scholar
  42. 42.
    Arlt M, Haase D, Hampel S (2010) Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death. Nanotechnology 21:335101CrossRefGoogle Scholar
  43. 43.
    Muralkami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405CrossRefGoogle Scholar
  44. 44.
    Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52CrossRefGoogle Scholar
  45. 45.
    Fabbro C, Ali-Boucetta H, Ros TD, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 3911–3926Google Scholar
  46. 46.
    Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen XY, Yang QW, Felsher DW, Dai HJ (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 48:7668–7672CrossRefGoogle Scholar
  47. 47.
    Kam NWS, O’Connell M, Wisdom J, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605CrossRefGoogle Scholar
  48. 48.
    Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, Guthold M, Gmeiner WH (2009) Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 3:2667–2673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hang Sun
    • 1
  • Ping She
    • 1
  • Guolong Lu
    • 1
  • Kongliang Xu
    • 1
  • Wei Zhang
    • 2
  • Zhenning Liu
    • 1
  1. 1.Key Laboratory of Bionic Engineering, Ministry of EducationJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA

Personalised recommendations