Advertisement

Journal of Materials Science

, Volume 49, Issue 20, pp 7231–7243 | Cite as

Durability and surface chemistry of horizontally aligned CNT films as electrodes upon electrolysis of acidic aqueous solution

  • Dawid Janas
  • Stefanie K. Kreft
  • Slawomir Boncel
  • Krzysztof K. K. Koziol
Article

Abstract

We devised a simple and effective method of electrochemical functionalization of horizontally aligned CNT films in diluted HCl and H2SO4 solutions upon their electrolysis under a constant current mode. We were able to cause notable generation of carbon–oxygen and carbon–chlorine functional groups on the CNT film anodes as proven by EDX, XPS, and Raman spectroscopy. As a consequence, we observed significant changes of the morphology of the material under electron microscopy, what translated into improved compatibility of CNTs with hydrophilic media. In turn, application of CNT films as cathodes was found as a powerful tool for a thorough cleaning of the nanotubes. Finally, we demonstrated that by the selection of appropriate conditions, CNT films can act as easy-to-make and flexible electrodes with a high stability and performance superior to graphite for generation of non-oxidizing gases such as hydrogen from solution. CNT film electrodes are two orders of magnitude lighter and require much lower overpotential for faradaic splitting of water.

Keywords

Water Contact Angle Hydrochloric Acid Solution Lower Overpotential Constant Current Mode Hemispherical Electron Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

D.J. and K.K. acknowledge the European Research Council (under the Seventh Framework Program FP7/2007–2013, ERC Grant Agreement No 259061) and the Royal Society for the financial support. S.B. is greatly indebted to the Foundation for Polish Science in the framework of KOLUMB Program (FNP-DS-402–7410/2012/Kf), Ministry of Science and Higher Education in Poland (IP2012 003572) in the framework of IUVENTUS PLUS Program and National Science Centre in Poland in the framework of SONATA (2012/05/D/ST5/03519) for financing the research. X-ray photoelectron spectra were obtained at the National EPSRC XPS User’s Service (NEXUS) at Newcastle University, an EPSRC Mid-Range Facility.

Supplementary material

10853_2014_8430_MOESM1_ESM.doc (23.2 mb)
Supplementary material 1 (DOC 23728 kb)

References

  1. 1.
    Zhou CW, Kong J, Dai HJ (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84(24):5604–5607. doi: 10.1103/PhysRevLett.84.5604 CrossRefGoogle Scholar
  2. 2.
    Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677–732. doi: 10.1103/RevModPhys.79.677 CrossRefGoogle Scholar
  3. 3.
    Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208. doi: 10.1038/nnano.2007.89 CrossRefGoogle Scholar
  4. 4.
    Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514–R2516. doi: 10.1103/PhysRevB.59.R2514 CrossRefGoogle Scholar
  5. 5.
    Pop E, Mann D, Wang Q, Goodson KE, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100. doi: 10.1021/Nl052145f CrossRefGoogle Scholar
  6. 6.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi: 10.1038/381678a0 CrossRefGoogle Scholar
  7. 7.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555. doi: 10.1103/PhysRevLett.84.5552 CrossRefGoogle Scholar
  8. 8.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840. doi: 10.1016/j.carbon.2008.02.012 CrossRefGoogle Scholar
  9. 9.
    Moraes FC, Cabral MF, Mascaro LH, Machado SAS (2011) The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development. Surf Sci 605(3–4):435–440. doi: 10.1016/j.susc.2010.11.014 CrossRefGoogle Scholar
  10. 10.
    Marques RRN, Machado BF, Faria JL, Silva AMT (2010) Controlled generation of oxygen functionalities on the surface of single-walled carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 48(5):1515–1523. doi: 10.1016/j.carbon.2009.12.047 CrossRefGoogle Scholar
  11. 11.
    Xia W, Yin XL, Kundu S, Sanchez M, Birkner A, Woll C, Muhler M (2011) Visualization and functions of surface defects on carbon nanotubes created by catalytic etching. Carbon 49(1):299–305. doi: 10.1016/j.carbon.2010.09.025 CrossRefGoogle Scholar
  12. 12.
    Grujicic M, Cao G, Rao AM, Tritt TM, Nayak S (2003) UV-light enhanced oxidation of carbon nanotubes. Appl Surf Sci 214(1–4):289–303. doi: 10.1016/S0169-4332(03)00361-1 CrossRefGoogle Scholar
  13. 13.
    Savage T, Bhattacharya S, Sadanadan B, Gaillard J, Tritt TM, Sun YP, Wu Y, Nayak S, Car R, Marzari N, Ajayan PM, Rao AM (2003) Photoinduced oxidation of carbon nanotubes. J Phys 15(35):5915–5921. doi: 10.1088/0953-8984/15/35/301 Pii S0953-8984(03)60152-9Google Scholar
  14. 14.
    Colomer JF, Marega R, Traboulsi H, Meneghetti M, Van Tendeloo G, Bonifazi D (2009) Microwave-assisted bromination of double-walled carbon nanotubes. Chem Mater 21(20):4747–4749. doi: 10.1021/Cm902029m CrossRefGoogle Scholar
  15. 15.
    Vazquez E, Prato M (2009) Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 3(12):3819–3824. doi: 10.1021/Nn901604j CrossRefGoogle Scholar
  16. 16.
    Liu CM, Cao HB, Li YP, Xu HB, Zhang Y (2006) The effect of electrolytic oxidation on the electrochemical properties of multi-walled carbon nanotubes. Carbon 44(14):2919–2924. doi: 10.1016/j.carbon.2006.05.046 CrossRefGoogle Scholar
  17. 17.
    Balasubramanian K, Burghard M (2008) Electrochemically functionalized carbon nanotubes for device applications. J Mater Chem 18(26):3071–3083. doi: 10.1039/B718262g CrossRefGoogle Scholar
  18. 18.
    Ohmori S, Saito T (2012) Electrochemical durability of single-wall carbon nanotube electrode against anodic oxidation in water. Carbon 50(13):4932–4938. doi: 10.1016/j.carbon.2012.06.023 CrossRefGoogle Scholar
  19. 19.
    Komarova NS, Krivenko AG, Ryabenko AG, Naumkin AV, Stenina EV, Sviridova LN (2012) Spectroscopic characterization of the electrochemical functionalization of single-walled carbon nanotubes in aqueous and organic media. Carbon 50(3):922–931. doi: 10.1016/j.carbon.2011.09.054 CrossRefGoogle Scholar
  20. 20.
    Komarova NS, Krivenko AG, Ryabenko AG, Naumkin AV (2013) Active forms of oxygen as agents for electrochemical functionalization of SWCNTs. Carbon 53:188–196. doi: 10.1016/j.carbon.2012.10.047 CrossRefGoogle Scholar
  21. 21.
    Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W (2002) Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys 2(2):107–111. doi: 10.1016/S1567-1739(01)00072-4 CrossRefGoogle Scholar
  22. 22.
    Rafailov PM, Thomsen C, Monev M, Dettlaff-Weglikowska U, Roth S (2008) Electrochemical functionalization of SWNT bundles in acid and salt media as observed by Raman and X-ray photoelectron spectroscopy. Phys Status Solidi B 245(10):1967–1970. doi: 10.1002/pssb.200879569 CrossRefGoogle Scholar
  23. 23.
    Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278. doi: 10.1126/science.1094982 CrossRefGoogle Scholar
  24. 24.
    Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318(5858):1892–1895. doi: 10.1126/science.1147635 CrossRefGoogle Scholar
  25. 25.
    Boccaccini AR, Cho J, Roether JA, Thomas BJC, Jane Minay E, Shaffer MSP (2006) Electrophoretic deposition of carbon nanotubes. Carbon 44(15):3149–3160. doi: 10.1016/j.carbon.2006.06.021 CrossRefGoogle Scholar
  26. 26.
    Shimada T, Yanase H, Morishita K, Hayashi J-I, Chiba T (2004) Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon 42(8–9):1635–1639. doi: 10.1016/j.carbon.2004.02.019 CrossRefGoogle Scholar
  27. 27.
    Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103(38):8116–8121. doi: 10.1021/Jp991659y CrossRefGoogle Scholar
  28. 28.
    Datsyuk V, Guerret-Piecourt C, Dagreou S, Billon L, Dupin JC, Flahaut E, Peigney A, Laurent C (2005) Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers. Carbon 43(4):873–876. doi: 10.1016/j.carbon.2004.10.052 CrossRefGoogle Scholar
  29. 29.
    Janas D, Koziol KK (2013) Rapid electrothermal response of high-temperature carbon nanotube film heaters. Carbon 59:457–463. doi: 10.1016/j.carbon.2013.03.039 CrossRefGoogle Scholar
  30. 30.
    Boncel S, Sundaram RM, Windle AH, Koziol KKK (2011) Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano 5(12):9339–9344. doi: 10.1021/Nn202685x CrossRefGoogle Scholar
  31. 31.
    Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11(2):154–157. doi: 10.1002/(SICI)1521-4095(199902)11:2<154:AID-ADMA154>3.0.CO;2-B CrossRefGoogle Scholar
  32. 32.
    Herraiz-Cardona I, González-Buch C, Ortega E, García-Antón J, Pérez-Herranz V (2013) Energy efficiency improvement of alkaline water electrolysis by using 3D Ni cathodes fabricated via a double-template electrochemical process. Chem Eng Trans 32:451–456Google Scholar
  33. 33.
    Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40(12):2043–2061. doi: 10.1016/S0008-6223(02)00066-0 CrossRefGoogle Scholar
  34. 34.
    Jorio A, Pimenta MA, Souza AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139. doi: 10.1088/1367-2630/5/1/139 CrossRefGoogle Scholar
  35. 35.
    Khantimerov SM, Shustov VA, Kurbatova NV, Kukovitsky EF, Matukhin VL, Sakhratov YA, Suleimanov NM (2013) Effect of electrochemical treatment on structural properties of conical carbon nanotubes. Appl Phys A 113:1–6. doi: 10.1007/s00339-013-7697-0 CrossRefGoogle Scholar
  36. 36.
    Jang WS, Chae SS, Lee SJ, Song KM, Baik HK (2012) Improved electrical conductivity of a non-covalently dispersed graphene-carbon nanotube film by chemical p-type doping. Carbon 50(3):943–951. doi: 10.1016/j.carbon.2011.09.057 CrossRefGoogle Scholar
  37. 37.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3(4):210–215. doi: 10.1038/nnano.2008.67 CrossRefGoogle Scholar
  38. 38.
    Ko HH, Pikus Y, Jiang CY, Jauss A, Hollricher O, Tsukruk VV (2004) High-resolution Raman microscopy of curled carbon nanotubes. Appl Phys Lett 85(13):2598–2600. doi: 10.1063/1.1795981 CrossRefGoogle Scholar
  39. 39.
    Exner O, Bohm S (2002) Bond angles and bond lengths in monosubstituted benzene and ethene derivatives: a comparison of computational and crystallographic results. Acta Crystallogr B 58:877–883. doi: 10.1107/S0108768102010510 CrossRefGoogle Scholar
  40. 40.
    Moye CJ, Sternhell S (1964) The degradation of aromatic rings: the action of hypochlorite on phenol. Tetrahedron Lett 5(35):2411–2417. doi: 10.1016/S0040-4039(00)76325-8 CrossRefGoogle Scholar
  41. 41.
    Atkins PW (1998) Physical chemistry, 6th edn. Freeman, New YorkGoogle Scholar
  42. 42.
    Drogui P, Elmaleh S, Rumeau M, Bernard C, Rambaud A (2001) Hydrogen peroxide production by water electrolysis: application to disinfection. J Appl Electrochem 31(8):877–882. doi: 10.1023/A:1017588221369 CrossRefGoogle Scholar
  43. 43.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Edit 45(42):6962–6984. doi: 10.1002/anie.200503779 CrossRefGoogle Scholar
  44. 44.
    Petigara BR, Blough NV, Mignerey AC (2002) Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36(4):639–645. doi: 10.1021/Es001726y CrossRefGoogle Scholar
  45. 45.
    Nadezhdin AD (1988) Mechanism of ozone decomposition in water: the role of termination. Ind Eng Chem Res 27(4):548–550. doi: 10.1021/Ie00076a002 CrossRefGoogle Scholar
  46. 46.
    Bart SC, Lobkovsky E, Chirik PJ (2004) Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. J Am Chem Soc 126(42):13794–13807. doi: 10.1021/Ja046753t CrossRefGoogle Scholar
  47. 47.
    Yu RP, Darmon JM, Hoyt JM, Margulieux GW, Turner ZR, Chirik PJ (2012) High-activity iron catalysts for the hydrogenation of hindered, unfunctionalized alkenes. Acs Catal 2(8):1760–1764. doi: 10.1021/Cs300358m CrossRefGoogle Scholar
  48. 48.
    Wang TX, Margerum DW (1994) Kinetics of reversible chlorine hydrolysis: temperature-dependence and general acid base-assisted mechanisms. Inorg Chem 33(6):1050–1055. doi: 10.1021/Ic00084a014 CrossRefGoogle Scholar
  49. 49.
    Liu ZF, Siu CK, Tse JS (1999) Catalysis of the reaction HCl + HOCl → H2O + Cl2 on an ice surface. Chem Phys Lett 309(5–6):335–343. doi: 10.1016/S0009-2614(99)00683-1 CrossRefGoogle Scholar
  50. 50.
    Yu HO, Zhang ZJ, Wang Z, Jiang ZW, Liu J, Wang L, Wan D, Tang T (2010) Double functions of chlorinated carbon nanotubes in its combination with Ni2O3 for reducing flammability of polypropylene. J Phys Chem C 114(31):13226–13233. doi: 10.1021/Jp104216r CrossRefGoogle Scholar
  51. 51.
    Janas D, Vilatela AC, Koziol K (2013) Performance of carbon nanotube wires in extreme conditions. Carbon 62:438–446. doi: 10.1016/j.carbon.2013.06.029 CrossRefGoogle Scholar
  52. 52.
    Gonzalez-Dominguez JM, Castell P, Bespin-Gascon S, Anson-Casaos A, Diez-Pascual AM, Gomez-Fatou MA, Benito AM, Maser WK, Martinez MT (2012) Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J Mater Chem 22(39):21285–21297. doi: 10.1039/C2jm35272a CrossRefGoogle Scholar
  53. 53.
    Cingil HE, Balmer JA, Armes SP, Bain PS (2010) Conducting polymer-coated thermally expandable microspheres. Polym Chem 1(8):1323–1331. doi: 10.1039/C0py00108b CrossRefGoogle Scholar
  54. 54.
    Werder T, Walther JH, Jaffe RL, Halicioglu T, Noca F, Koumoutsakos P (2001) Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett 1(12):697–702. doi: 10.1021/Nl015640u CrossRefGoogle Scholar
  55. 55.
    Janas D, Sundaram R, Koziol KKK (2012) Surface modification of directly spun carbon nanotube films. Mater Lett 79:32–34. doi: 10.1016/j.matlet.2012.03.090 CrossRefGoogle Scholar
  56. 56.
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. T Faraday Soc 40:0546–0550. doi: 10.1039/Tf9444000546 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dawid Janas
    • 1
  • Stefanie K. Kreft
    • 1
  • Slawomir Boncel
    • 1
    • 2
  • Krzysztof K. K. Koziol
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of Organic Chemistry, Bioorganic Chemistry and BiotechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations