Advertisement

Journal of Materials Science

, Volume 49, Issue 20, pp 7156–7171 | Cite as

Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids

  • Mohammad Mehrali
  • Emad Sadeghinezhad
  • Sara Tahan Latibari
  • Mehdi Mehrali
  • Hussein Togun
  • M. N. M. Zubir
  • S. N. Kazi
  • Hendrik Simon Cornelis Metselaar
Original Paper

Abstract

Nanofluids perform a crucial role in the development of newer technologies ideal for industrial purposes. In this study, Nitrogen-doped graphene (NDG) nanofluids, with varying concentrations of nanoparticles (0.01, 0.02, 0.04, and 0.06 wt%) were prepared using the two-step method in a 0.025 wt% Triton X-100 (as a surfactant) aqueous solution as a base. Stability, zeta potential, thermal conductivity, viscosity, specific heat, and electrical conductivity of nanofluids containing NDG particles were studied. The stability of the nanofluids was investigated by UV–vis over a time span of 6 months and concentrations remain relatively constant while the maximum relative concentration reduction was 20 %. The thermal conductivity of nanofluids was increased with the particle concentration and temperature, while the maximum enhancement was about 36.78 % for a nanoparticle loading of 0.06 wt%. These experimental results compared with some theoretical models including Maxwell and Nan’s models and observed a good agreement between Nan’s model and the experimental results. Study of the rheological properties of NDG nanofluids reveals that it followed the Newtonian behaviors, where viscosity decreased linearly with the rise of temperature. It has been observed that the specific heat of NDG nanofluid reduced gradually with the increase of concentration of nanoparticles and temperature. The electrical conductivity of the NDG nanofluids enhanced significantly due to the dispersion of NDG in the base fluid. This novel type of fluids demonstrates an outstanding potential for use as innovative heat transfer fluids in medium-temperature systems such as solar collectors.

Keywords

Thermal Conductivity Contact Angle Graphene Oxide Zeta Potential Specific Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

CNT

Carbon nanotube

cp

Specific heat

cp,nf

Specific heat capacities of nanofluid

cp,np

Specific heat capacities of nanoparticle

cp,bf

Specific heat capacities of base fluid

EG

Ethylene glycol

kbf

Thermal conductivity based fluid

knf

Thermal conductivity nanofluids

kp

Thermal conductivity of the particle

MWNTs

Multi-walled carbon nanotubes

NDG

Nitrogen-doped graphene

FESEM

Field emission scanning electron microscopy

SWNTs

Single-walled carbon nanotubes

TEM

Transmission electron microscope

t

Time

wt%

Weight percentage

XRD

X-ray diffraction

2D

Two-dimensional

ϕ

Volume fraction

ρnf

Densities of nanofluid

ρnp

Densities of nanoparticles

ρbf

Densities of base fluid,

ɛ

Molar absorptivity, L (mol−1 cm−1)

μ

Electrophoretic mobility

η

Viscosity

D

Dielectric constant of the liquid in the boundary layer

Notes

Acknowledgements

This research work has been financially supported by High Impact Research (MOHE-HIR) grant UM.C/625/1/HIR/MOHE/ENG/21-(D000021-16001), UMRG grant RP012D-13AET. The author wishes to thank the Bright Sparks unit (University of Malaya) for additional financial support.

Conflict of interest

None.

Supplementary material

10853_2014_8424_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1465 kb)

References

  1. 1.
    LotfizadehDehkordi B et al (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109–1115CrossRefGoogle Scholar
  2. 2.
    Choi SUS, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, Illinois, pp 99–105Google Scholar
  3. 3.
    Hassan M et al (2013) Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 15(1):144–155CrossRefGoogle Scholar
  4. 4.
    Azizi-Toupkanloo H, Goharshadi EK, Nancarrow P (2013) Structural, electrical, and rheological properties of palladium/silver bimetallic nanoparticles prepared by conventional and ultrasonic-assisted reduction methods. Adv Powder Technol 25(2):801–810CrossRefGoogle Scholar
  5. 5.
    Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101CrossRefGoogle Scholar
  6. 6.
    Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196(3):326–330CrossRefGoogle Scholar
  7. 7.
    Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13(6):977–985CrossRefGoogle Scholar
  8. 8.
    Zhi C et al (2011) Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 5(8):6571–6577CrossRefGoogle Scholar
  9. 9.
    Sundar LS et al (2014) Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep 4. doi: 10.1038/srep04039
  10. 10.
    Yeganeh M et al (2010) Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 53(15–16):3186–3192CrossRefGoogle Scholar
  11. 11.
    Lee KJ, Yoon SH, Jang J (2007) Carbon nanofibers: a novel nanofiller for nanofluid applications. Small 3(7):1209–1213CrossRefGoogle Scholar
  12. 12.
    Dongxiao H et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457CrossRefGoogle Scholar
  13. 13.
    Nasiri A et al (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55(5–6):1529–1535CrossRefGoogle Scholar
  14. 14.
    Nanda J et al (2008) Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C 112(3):654–658CrossRefGoogle Scholar
  15. 15.
    Assael M et al (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971–985CrossRefGoogle Scholar
  16. 16.
    Chen L, Xie H, Yu W (2012) Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. J Mater Sci 47(14):5590–5595. doi: 10.1007/s10853-012-6451-x CrossRefGoogle Scholar
  17. 17.
    Yang Y et al (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48(6):1107–1116CrossRefGoogle Scholar
  18. 18.
    Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356CrossRefGoogle Scholar
  19. 19.
    Yu W et al (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375(10):1323–1328CrossRefGoogle Scholar
  20. 20.
    Zheng R et al (2011) Thermal percolation in stable graphite suspensions. Nano Lett 12(1):188–192CrossRefGoogle Scholar
  21. 21.
    Mehrali M et al (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9(1):1–12CrossRefGoogle Scholar
  22. 22.
    Lee G-J, Rhee CK (2014) Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci 49(4):1506–1511. doi: 10.1007/s10853-013-7831-6 CrossRefGoogle Scholar
  23. 23.
    Baby TT, Ramaprabhu S (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 21(26):9702–9709CrossRefGoogle Scholar
  24. 24.
    Hordy N et al (2014) High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy 105:82–90CrossRefGoogle Scholar
  25. 25.
    Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170CrossRefGoogle Scholar
  26. 26.
    Togun H et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153–170CrossRefGoogle Scholar
  27. 27.
    Moghaddam MB et al (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372CrossRefGoogle Scholar
  28. 28.
    Mehrali M et al (2013) Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy 58:628–634CrossRefGoogle Scholar
  29. 29.
    Mehrali M et al (2013) Preparation and characterization of palmtic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl Therm Eng 61(3):633–640CrossRefGoogle Scholar
  30. 30.
    Novoselov K et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  31. 31.
    Kroto H, Heath J, O’Brien S et al (1985) C60: Buckminsterfullerene. Nature 3(18):162–163CrossRefGoogle Scholar
  32. 32.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  33. 33.
    Rao CNR, Sood AK (2013) Graphene: synthesis, properties, and phenomena. Wiley-VCH, WeinheimGoogle Scholar
  34. 34.
    Wehling T et al (2008) Molecular doping of graphene. Nano Lett 8(1):173–177CrossRefGoogle Scholar
  35. 35.
    Li N et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259CrossRefGoogle Scholar
  36. 36.
    Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758CrossRefGoogle Scholar
  37. 37.
    Deng D et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193CrossRefGoogle Scholar
  38. 38.
    Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131(43):15939–15944CrossRefGoogle Scholar
  39. 39.
    Wakeland S et al (2010) Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon 48(12):3463–3470CrossRefGoogle Scholar
  40. 40.
    Mehrali M et al. (2014) Synthesis, mechanical properties and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6(6):3947–3962. doi: 10.1021/am500845x
  41. 41.
    Guo H-L et al (2013) Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J Mater Chem A 1(6):2248–2255CrossRefGoogle Scholar
  42. 42.
    Lu Y et al (2013) Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon 63:508–516CrossRefGoogle Scholar
  43. 43.
    Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730Google Scholar
  44. 44.
    Yousefi T et al (2012) An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86(2):771–779CrossRefGoogle Scholar
  45. 45.
    Sun Z et al (2013) High-yield exfoliation of graphite in acrylate polymers: a stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon 64:288–294CrossRefGoogle Scholar
  46. 46.
    Mehrali M et al (2014) Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason Sonochem 21(2):735–742CrossRefGoogle Scholar
  47. 47.
    Goharshadi EK et al (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16(1):120–123CrossRefGoogle Scholar
  48. 48.
    Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94CrossRefGoogle Scholar
  49. 49.
    Hagen KD (1999) Heat transfer with applications. Prentice Hall Englewood Cliffs, New JerseyGoogle Scholar
  50. 50.
    Ramires ML et al (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377CrossRefGoogle Scholar
  51. 51.
    Buongiorno J et al. (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106(9):094312–094312-14.Google Scholar
  52. 52.
    Abareshi M et al (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901CrossRefGoogle Scholar
  53. 53.
    Yang P et al (2013) Numerical investigation on thermal conductivity and thermal rectification in graphene through nitrogen-doping engineering. Appl Phys A 112(3):759–765CrossRefGoogle Scholar
  54. 54.
    Hwang Y et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455(1):70–74CrossRefGoogle Scholar
  55. 55.
    Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transfer 18(4):481–485CrossRefGoogle Scholar
  56. 56.
    Marquis F, Chibante L (2005) Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. JOM 57(12):32–43CrossRefGoogle Scholar
  57. 57.
    Amrollahi A, Hamidi A, Rashidi A (2008) The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology 19(31):315701CrossRefGoogle Scholar
  58. 58.
    Wang B, Hao J, Li H (2013) Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure. Dalton Trans 42(16):5866–5873CrossRefGoogle Scholar
  59. 59.
    Sen Gupta S et al. (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110(8):084302–084302-6.Google Scholar
  60. 60.
    Sarojini KGK et al (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohammad Mehrali
    • 1
  • Emad Sadeghinezhad
    • 2
  • Sara Tahan Latibari
    • 1
  • Mehdi Mehrali
    • 1
  • Hussein Togun
    • 2
    • 3
  • M. N. M. Zubir
    • 2
  • S. N. Kazi
    • 2
  • Hendrik Simon Cornelis Metselaar
    • 1
  1. 1.Department of Mechanical Engineering and Advanced Material Research CenterUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Mechanical EngineeringUniversity of Thi-QarNassiriyaIraq

Personalised recommendations