Journal of Materials Science

, Volume 49, Issue 20, pp 7116–7123 | Cite as

Hardness and flexural strength of single-walled carbon nanotube/alumina composites

  • A. Gallardo-López
  • R. Poyato
  • A. Morales-Rodríguez
  • A. Fernández-Serrano
  • A. Muñoz
  • A. Domínguez-Rodríguez


This work adds new experimental facts on room temperature hardness and flexural strength of alumina and composites with 1, 2, 5 and 10 vol% single-walled carbon nanotubes (SWNT) with similar grain size. Monolithic Al2O3 and composites were spark plasma sintered (SPS) in identical conditions at 1300 °C, achieving high density, submicrometric grain size and a reasonably homogeneous distribution of SWNT along grain boundaries for all compositions with residual agglomerates. Vickers hardness values comparable to monolithic alumina were obtained for composites with low (1 vol%) SWNT content, though they decreased for higher concentrations, attributed to the fact that SWNT constitute a softer phase. Three-point bending flexural strength also decreased with increasing SWNT content. Correlation between experimental results and microstructural analysis by electron microscopy indicates that although SWNT agglomerates have often been blamed for detrimental effects on the mechanical properties of these composites, they are not the main cause for the reported decay in flexural strength.


Fracture Toughness Flexural Strength Spark Plasma Sinter Alumina Matrix Ceramic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financed by Spanish Ministry of Science and Innovation (MAT2009-11078 and MAT2012-34217) and by Junta de Andalucía (P12-FQM-1079). Microscopy studies were performed at CITIUS facilities (Universidad de Sevilla).


  1. 1.
    Li F, Cheng H, Bai S, Su G, Dresselhaus M (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77(20):3161–3163CrossRefGoogle Scholar
  2. 2.
    Inam F, Yan H, Jayaseelan DD, Peijs T, Reece MJ (2010) Electrically conductive alumina-carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157CrossRefGoogle Scholar
  3. 3.
    Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56(4):265–268CrossRefGoogle Scholar
  4. 4.
    Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2(1):38–42CrossRefGoogle Scholar
  5. 5.
    Okada A (2008) Automotive and industrial applications of structural ceramics in Japan. J Eur Ceram Soc 28(5):1097–1104CrossRefGoogle Scholar
  6. 6.
    Inam F, Yan H, Peijs T, Reece MJ (2010) The sintering and grain growth behaviour of ceramic-carbon nanotube nanocomposites. Compos Sci Technol 70(6):947–952CrossRefGoogle Scholar
  7. 7.
    Xu H, Jahanmir S (1995) Effect of grain-size on scratch damage and hardness of alumina. J Mater Sci Lett 14(10):736–739CrossRefGoogle Scholar
  8. 8.
    Miyahara N, Yamaishi K, Mutoh Y, Uematsu K, Inoue M (1994) Effect of grain-size on strength and fracture-toughness in alumina. Int J Ser A-Mech Mater Eng 37(3):231–237Google Scholar
  9. 9.
    You X, Si T, Liu N, Ren P, Xu Y, Feng J (2005) Effect of grain size on thermal shock resistance of Al2O3–TiC ceramics. Ceram Int 31(1):33–38CrossRefGoogle Scholar
  10. 10.
    Hiraga K, Kim B, Morita K, Yoshida H, Suzuki TS, Sakka Y (2007) High-strain-rate superplasticity in oxide ceramics. Sci Technol Adv Mater 8(7–8):578–587CrossRefGoogle Scholar
  11. 11.
    Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52(4):931–944CrossRefGoogle Scholar
  12. 12.
    Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Mater 58(7):2685–2697CrossRefGoogle Scholar
  13. 13.
    Padture NP (2009) Multifunctional composites of ceramics and single-walled carbon nanotubes. Adv Mater 21(17):1767–1770CrossRefGoogle Scholar
  14. 14.
    Sun J, Gao L, Iwasa M, Nakayama T, Niihara K (2005) Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceram Int 31(8):1131–1134CrossRefGoogle Scholar
  15. 15.
    Laurent C, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes Fe alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18(14):2005–2013CrossRefGoogle Scholar
  16. 16.
    Thomson KE, Jiang D, Ritchie RO, Mukherjee AK (2007) A preservation study of carbon nanotubes in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Appl Phys A-Mat Sci Proc 89(3):651–654CrossRefGoogle Scholar
  17. 17.
    Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scr Mater 56(11):959–962CrossRefGoogle Scholar
  18. 18.
    Ahmad K, Pan W (2008) Hybrid nanocomposites: a new route towards tougher alumina ceramics. Compos Sci Technol 68(6):1321–1327CrossRefGoogle Scholar
  19. 19.
    Mo C, Cha S, Kim K, Lee K, Hong S (2005) Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mat Sci Eng A-Struct 395(1–2):124–128CrossRefGoogle Scholar
  20. 20.
    Cha S, Kim K, Lee K, Mo C, Hong S (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr Mater 53(7):793–797CrossRefGoogle Scholar
  21. 21.
    Fan JP, Zhao DQ, Wu MS, Xu ZN, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89(2):750–753CrossRefGoogle Scholar
  22. 22.
    Kim SW, Chung WS, Sohn K, Son C, Lee S (2009) Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mat Sci Eng A-Struct 517(1–2):293–299CrossRefGoogle Scholar
  23. 23.
    Yamamoto G, Hashida T (2012) Carbon nanotube reinforced alumina composite materials. In: Hu N (ed) Composites and their properties: InTechGoogle Scholar
  24. 24.
    Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70(8):1199–1206CrossRefGoogle Scholar
  25. 25.
    Bakhsh N, Khalid FA, Hakeem AS (2013) Synthesis and characterization of pressureless sintered carbon nanotube reinforced alumina nanocomposites. Mat Sci Eng A-Struct 578:422–429CrossRefGoogle Scholar
  26. 26.
    Ahmad I, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Carbon nanotube toughened aluminium oxide nanocomposite. J Eur Ceram Soc 30(4):865–873CrossRefGoogle Scholar
  27. 27.
    Liu J, Rinzler A, Dai H, Hafner J, Bradley R, Boul P, Lu A, Iverson T, Shelimov K, Huffman C, Rodriguez-Macias F, Shon Y, Lee T, Colbert D, Smalley R (1998) Fullerene pipes. Science 280(5367):1253–1256CrossRefGoogle Scholar
  28. 28.
    Poyato R, Vasiliev AL, Padture NP, Tanaka H, Nishimura T (2006) Aqueous colloidal processing of single-wall carbon nanotubes and their composites with ceramics. Nanotechnology 17(6):1770–1777CrossRefGoogle Scholar
  29. 29.
    Omori M (2000) Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mat Sci Eng A-Struct 287(2):183–188CrossRefGoogle Scholar
  30. 30.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRefGoogle Scholar
  31. 31.
    Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60(2):622–632CrossRefGoogle Scholar
  32. 32.
    Wang XT, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3(8):539–544CrossRefGoogle Scholar
  33. 33.
    Poyato R, Gallardo-López A, Gutiérrez-Mora F, Morales-Rodríguez A, Muñoz A, Domínguez-Rodríguez A (2014) Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites. J Eur Ceram Soc 34(6):1571–1579CrossRefGoogle Scholar
  34. 34.
    Morales-Rodriguez A, Poyato R, Gallardo-Lopez A, Muñoz A, Dominguez-Rodriguez A (2013) Evidence of nanograin cluster coalescence in spark plasma sintered alpha-Al2O3. Scr Mater 69(7):529–532CrossRefGoogle Scholar
  35. 35.
    González L, Cumbrera F, Sánchez-Bajo F, Pajares A (1994) Measurement of fiber orientation in short-fiber composites. Acta Metall Mater 42(3):689–694CrossRefGoogle Scholar
  36. 36.
    Vasiliev AL, Poyato R, Padture NP (2007) Single-wall carbon nanotubes at ceramic grain boundaries. Scr Mater 56(6):461–463CrossRefGoogle Scholar
  37. 37.
    Poorteman M, Traianidis M, Bister G, Cambier F (2009) Colloidal processing, hot pressing and characterisation of electroconductive MWCNT-alumina composites with compositions near the percolation threshold. J Eur Ceram Soc 29(4):669–675CrossRefGoogle Scholar
  38. 38.
    Huang Q, Jiang D, Ovid’ko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scr Mater 63(12):1181–1184CrossRefGoogle Scholar
  39. 39.
    Morales-Rodríguez A, Gallardo-López A, Fernández-Serrano A, Poyato R, Muñoz A, Domínguez-Rodríguez A (2014) Improvement of Vickers hardness measurement on SWNT/Al2O3 composites consolidated by spark plasma sintering. J Eur Ceram Soc. doi: 10.1016/j.jeurceramsoc.2014.05.048
  40. 40.
    Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem Phys Lett 352(1–2):20–25CrossRefGoogle Scholar
  41. 41.
    Zapata-Solvas E, Gomez-Garcia D, Dominguez-Rodriguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020CrossRefGoogle Scholar
  42. 42.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2010) On the microstructure of single wall carbon nanotubes reinforced ceramic matrix composites. J Mater Sci 45(9):2258–2263CrossRefGoogle Scholar
  43. 43.
    Liu L, Hou Z, Zhang B, Ye F, Zhang Z, Zhou Y (2013) A new heating route of spark plasma sintering and its effect on alumina ceramic densification. Mat Sci Eng A-Struct 559:462–466CrossRefGoogle Scholar
  44. 44.
    Inam F, Peijs T, Reece MJ (2011) The production of advanced fine-grained alumina by carbon nanotube addition. J Eur Ceram Soc 31(15):2853–2859CrossRefGoogle Scholar
  45. 45.
    ASTM C116113 (1996) standard test method for flexural strength of advanced ceramics at ambient temperature. In: Anonymous book of standards, vol 15.01Google Scholar
  46. 46.
    Kasperski A, Wibel A, Estournès C, Laurent Ch, Peigney A (2013) Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon 53:62–72CrossRefGoogle Scholar
  47. 47.
    Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A (2000) Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Mater 48(14):3803–3812CrossRefGoogle Scholar
  48. 48.
    Poorteman M, Descamps P, Cambier F, Leriche A, Thierry B (1993) Hot isostatic pressing of SiC-platelets Y-Tzp composites. J Eur Ceram Soc 12(2):103–109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Gallardo-López
    • 1
    • 2
  • R. Poyato
    • 2
  • A. Morales-Rodríguez
    • 1
    • 2
  • A. Fernández-Serrano
    • 1
  • A. Muñoz
    • 1
    • 2
  • A. Domínguez-Rodríguez
    • 1
  1. 1.Departamento de Física de la Materia CondensadaUniversidad de SevillaSevillaSpain
  2. 2.Instituto de Ciencia de Materiales de SevillaCSIC-Universidad de SevillaSevillaSpain

Personalised recommendations