Advertisement

Journal of Materials Science

, Volume 49, Issue 17, pp 6039–6047 | Cite as

Wear behavior of Au–ZnO nanocomposite films for electrical contacts

  • R. L. Schoeppner
  • D. F. Bahr
  • H. Jin
  • R. S. Goeke
  • N. R. Moody
  • S. V. Prasad
Article

Abstract

Electrical contact switches require low contact resistance for efficient passage of signals, while withstanding repetitive cycling. Hard gold with alloy additions of Ni, Co, or Ag can increase the wear resistance of Au films, however, this causes a significant decrease in conductivity and alloying elements can segregate during long-term aging leading to property evolution. The current work demonstrates that Au–zinc oxide (ZnO) nanocomposites can create a hard Au coating with a uniform, stable structure under frictional loading. Addition of ZnO particles decreases the grain size and texture of the film by 35 and 40–75 %, respectively, indicating a change in growth behavior of the film. The nanoindentation hardness increased directly with increasing ZnO concentration. Atomic force microscopy examination of wear-tested films demonstrated morphological stability after frictional contact and thus showed the potential for these films to replace current hard Au used on contact terminals.

Keywords

Wear Track Wear Behavior Oxide Dispersion Strengthened Plastic Zone Size Wear Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    Kim B-N, Hiraga K, Sakka Y, Ahn B-W (1999) A grain-boundary diffusion model of dynamic grain growth during superplastic deformation. Acta Mater 47:3433–3439. doi: 10.1016/S1359-6454(99)00201-3 CrossRefGoogle Scholar
  2. 2.
    Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419. doi: 10.1016/S1359-6454(01)00338-X CrossRefGoogle Scholar
  3. 3.
    Ghosh AK, Hamilton CH (1979) Mechanical behavior and hardening characteristics of a superplastic Ti-6Al-4V alloy. Metall Trans A 10:699–706CrossRefGoogle Scholar
  4. 4.
    Senkov ON, Myshlyaev MM (1986) Grain growth in a superplastic Zn-22 % Al alloy. Acta Metall 34:97–106CrossRefGoogle Scholar
  5. 5.
    Gianola DS, Van Petegem S, Legros M et al (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263. doi: 10.1016/j.actamat.2006.01.023 CrossRefGoogle Scholar
  6. 6.
    Hyman D, Mehregany M (1999) Contact physics of gold microcontacts for MEMS switches. IEEE Trans Compon Packag Technol 22:357–364. doi: 10.1109/6144.796533 CrossRefGoogle Scholar
  7. 7.
    Leedy KD, Cortez R, Ebel JL et al (2003) Metallization schemes for radio frequency microelectromechanical system switches. J Vac Sci Technol A Vac Surf Film 21:1172–1177. doi: 10.1116/1.1560714 CrossRefGoogle Scholar
  8. 8.
    Song J, Srolovitz DJ (2007) Atomistic simulation of multicycle asperity contact. Acta Mater 55:4759–4768. doi: 10.1016/j.actamat.2007.04.042 CrossRefGoogle Scholar
  9. 9.
    Arrazat B, Mandrillon V, Inal K et al (2011) Microstructure evolution of gold thin films under spherical indentation for micro switch contact applications. J Mater Sci 46:6111–6117. doi: 10.1007/s10853-011-5575-8 CrossRefGoogle Scholar
  10. 10.
    Chew YH, Wong CC, Wulff F et al (2008) Strain rate sensitivity and Hall–Petch behavior of ultrafine-grained gold wires. Thin Solid Films 516:5376–5380. doi: 10.1016/j.tsf.2007.07.090 CrossRefGoogle Scholar
  11. 11.
    Petch NJ (1953) Cleavage strength of polycrystals. J Iron Steel Inst 174:25–28Google Scholar
  12. 12.
    Lo CC (1979) Hardening mechanisms of hard gold. J Appl Phys 50:6887–6891. doi: 10.1063/1.325890 CrossRefGoogle Scholar
  13. 13.
    Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64(9):747–753CrossRefGoogle Scholar
  14. 14.
    Jankowski AF, Ahmed HST (2012) The nanoscratch hardness of a gold–nickel nanocrystalline nanolaminate at high strain rate. Mater Lett 77:103–106. doi: 10.1016/j.matlet.2012.03.011 CrossRefGoogle Scholar
  15. 15.
    Coll M, Hacker CA, Miller LH et al (2009) Ultrasmooth gold as a top metal electrode for molecular electronic devices. ECS Trans 16:139–146CrossRefGoogle Scholar
  16. 16.
    Ghosh SK, Limaye PK, Swain BP et al (2007) Tribological behaviour and residual stress of electrodeposited Ni/Cu multilayer films on stainless steel substrate. Surf Coat Technol 201:4609–4618. doi: 10.1016/j.surfcoat.2006.09.314 CrossRefGoogle Scholar
  17. 17.
    Muñoz-Morris MA, Garcia Oca C, Morris DG (2002) An analysis of strengthening mechanisms in a mechanically alloyed, oxide dispersion strengthened iron aluminide intermetallic. Acta Mater 50:2825–2836. doi: 10.1016/S1359-6454(02)00101-5 CrossRefGoogle Scholar
  18. 18.
    Millett PC, Selvam RP, Saxena A (2007) Stabilizing nanocrystalline materials with dopants. Acta Mater 55:2329–2336. doi: 10.1016/j.actamat.2006.11.028 CrossRefGoogle Scholar
  19. 19.
    Millett PC, Selvam RP, Saxena A (2006) Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater 54:297–303. doi: 10.1016/j.actamat.2005.07.024 CrossRefGoogle Scholar
  20. 20.
    Bannuru T, Brown WL, Narksitipan S, Vinci RP (2008) The electrical and mechanical properties of Au–V and Au–V2O5 thin films for wear-resistant RF MEMS switches. J Appl Phys 103:083522–083527. doi: 10.1063/1.2902954 CrossRefGoogle Scholar
  21. 21.
    Fuschillo N, Gimpl ML (1970) Electrical and tensile properties of Cu-ThO2, Au-ThO2, Pt-ThO2 and Au-Al2O3, Pt-Al2O3 alloys. J Mater Sci 5:1078–1086. doi: 10.1007/BF00553895 CrossRefGoogle Scholar
  22. 22.
    Haslam AJ, Moldovan D, Yamakov V et al (2003) Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater 51:2097–2112. doi: 10.1016/S1359-6454(03)00011-9 CrossRefGoogle Scholar
  23. 23.
    Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901–111901-3. doi: 10.1063/1.2352725 CrossRefGoogle Scholar
  24. 24.
    Zepeda-Ruiz LA, Gilmer GH, Sadigh B et al (2005) Atomistic simulations of grain boundary pinning in CuFe alloys. Appl Phys Lett 87:231904–231904-3. doi: 10.1063/1.2137871 CrossRefGoogle Scholar
  25. 25.
    Weissmuller J, Krauss W, Haubold T et al (1992) Atomic structure and thermal stability of nanostructured Y-Fe alloys. Nanostruct Mater 1:439–447CrossRefGoogle Scholar
  26. 26.
    Gianola DS, Mendis BG, Cheng XM, Hemker KJ (2008) Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater Sci Eng A 483–484:637–640. doi: 10.1016/j.msea.2006.12.155 CrossRefGoogle Scholar
  27. 27.
    Saeki H, Tabata H, Kawai T (2001) Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun 120:439–443CrossRefGoogle Scholar
  28. 28.
    Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 79:988–990. doi: 10.1063/1.1384478 CrossRefGoogle Scholar
  29. 29.
    Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501–126530. doi: 10.1088/0034-4885/72/12/126501 CrossRefGoogle Scholar
  30. 30.
    Argibay N, Goeke RS, Dugger MT et al (2013) Electrical resistivity of Au–ZnO nanocomposite films. J Appl Phys 113:143712–143712-6. doi: 10.1063/1.4800874 CrossRefGoogle Scholar
  31. 31.
    Ohring M (2001) Materials science of thin films, 2nd edn. Academic Press, San Diego, pp 95–201Google Scholar
  32. 32.
    Page TF, Pharr GM, Hay JC et al (1998) Nanoindentation characterisation of coated systems: P:S2-a new approach using the continuous stiffness technique. Mater Res Soc Symp Proc 522:53–64CrossRefGoogle Scholar
  33. 33.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. 34.
    Schiffmann KI, Hieke A (2003) Analysis of microwear experiments on thin DLC coatings: friction, wear and plastic deformation. Wear 254:565–572. doi: 10.1016/S0043-1648(03)00188-1 CrossRefGoogle Scholar
  35. 35.
    Schiffmann KI (2008) Microtribological/mechanical testing in 0, 1 and 2 dimensions: a comparative study on different materials. Wear 265:1826–1836. doi: 10.1016/j.wear.2008.04.043 CrossRefGoogle Scholar
  36. 36.
    Tabor D (1951) The hardness of metals. Oxford University Press, London, pp 47–51Google Scholar
  37. 37.
    Meyers MA, Chawla KK (1984) Mechanical metallurgy: principles and applications. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  38. 38.
    Wang K, Tao NR, Liu G et al (2006) Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater 54:5281–5291. doi: 10.1016/j.actamat.2006.07.013 CrossRefGoogle Scholar
  39. 39.
    Prasad SV, Michael JR, Christenson TR (2003) EBSD studies on wear-induced subsurface regions in LIGA nickel. Scr Mater 48:255–260. doi: 10.1016/S1359-6462(02)00376-7 CrossRefGoogle Scholar
  40. 40.
    Bahr DF, Gerberich WW (1996) Plastic zone and pileup around large indentations. Metall Mater Trans A 27A:3793–3800CrossRefGoogle Scholar
  41. 41.
    Durst K, Backes B, Göken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater 52:1093–1097. doi: 10.1016/j.scriptamat.2005.02.009 CrossRefGoogle Scholar
  42. 42.
    Argibay N, Prasad SV, Goeke RS et al (2013) Wear resistant electrically conductive Au–ZnO nanocomposite coatings synthesized by e-beam evaporation. Wear 302:955–962. doi: 10.1016/j.wear.2013.01.049 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. L. Schoeppner
    • 1
    • 2
  • D. F. Bahr
    • 2
  • H. Jin
    • 3
  • R. S. Goeke
    • 4
  • N. R. Moody
    • 3
  • S. V. Prasad
    • 4
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Sandia National LaboratoriesLivermoreUSA
  4. 4.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations