Review: the characterization of electrospun nanofibrous liquid filtration membranes


Electrospun nanofibrous membranes (ENMs) are used in a variety of applications, including sensors, tissue engineering, air filtration, energy, and reinforcement in composite materials. Recently, they have gained an interest in the field of liquid filtration. The membranes, surface, bulk, and overall architecture play an important role in the filtration properties and hence the right characterization technique needs to be established, which will pave the way for future developments in the field of filtration. In this article, we have reviewed the recent advances in ENMs for liquid separation application.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Science, Singapore

  2. 2.

    Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272:179–187

  3. 3.

    Kaur S, Ma Z, Gopal R, Singh G, Ramakrishna S, Matsuura T (2007) Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane. Langmuir 23:13085–13092

  4. 4.

    Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Membr Sci 278:261–268

  5. 5.

    Yoon K, Hsiao BS, Chu B (2009) High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J Membr Sci 326:484–492

  6. 6.

    Kaur S, Rana D, Matsuura T, Sundarrajan S, Ramakrishna S (2012) Preparation and characterization of surface modified electrospun membranes for higher filtration flux. J Membr Sci 390–391:235–242

  7. 7.

    Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441

  8. 8.

    Ma H, Yoon K, Rong L, Mao Y, Mo Z, Fang D, Hollander Z, Gaiteri J, Hsiao BS, Chu B (2010) High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer. J Mater Chem 20:4692–4704

  9. 9.

    Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S (2011) Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination 279:201–209

  10. 10.

    Gopal R, Kaur S, Feng C, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219

  11. 11.

    Song X, Liu Z, Sun DD (2011) Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv Mater 23:3256–3260

  12. 12.

    Nabeela Nasreen SAA, Sundarrajan S, Syed Nizar SA, Balamurugan R, Ramakrishna S (2014) In-situ polymerization of PVDF-HEMA polymers, electrospun membranes with improved flux and antifouling properties for water filtration. Polym J 46:167–174

  13. 13.

    Kaur S, Sundarrajan S, Rana D, Matsuura T, Ramakrishna S (2012) Influence of electrospun fiber size on the separation efficiency of thin-film nanofiltration composite membrane. J Membr Sci 392:101–111

  14. 14.

    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8

  15. 15.

    Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T (2008) Next generation fibrous media for water treatment. MRS Bull 33:21–26

  16. 16.

    Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221

  17. 17.

    Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326–5334

  18. 18.

    Chu B, Hsiao BS (2009) The role of polymers in breakthrough technologies for water purification. J Polym Sci Polym Phys Ed 47:2431–2435

  19. 19.

    Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6238–6312. doi:10.1007/s10853-010-4509-1

  20. 20.

    Yoshikawa M, Tanioka A, Matsumoto H (2011) Molecularly imprinted nanofiber membranes. Curr Opin Chem Eng 1:18–26

  21. 21.

    Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232–248

  22. 22.

    Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37:487–513

  23. 23.

    Sundarrajan S, Ramakrishna S (2013) New directions in nanofiltration applications—are nanofibers the right materials as membranes in desalination? Desalination 308:198–208

  24. 24.

    Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

  25. 25.

    Ma HY, Chu B, Hsiao BS (2012) Functional nanofibers for water purification. In: Wei Q (ed) Functional nanofibers and their applications. Woodhead, Cambridge, pp 331–370

  26. 26.

    Raghavan P, Lim D-H, Ahn J-H, Nah C, Sherrington DC, Ryu H-S, Ahn H-J (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72:915–930

  27. 27.

    Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58:1173–1243

  28. 28.

    Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

  29. 29.

    Sundarrajan S, Balamurugan R, Kaur S, Ramakrishna S (2013) Potential of engineered electrospun nanofiber membranes for nanofiltration applications. Drying Technol 31:163–169

  30. 30.

    Hasanzadeh M, Hadavi Moghadam B (2013) Electrospun nanofibrous membranes as potential adsorbents for textile dye removal-A review. J Chem Health Risks 3:15–26

  31. 31.

    Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

  32. 32.

    Kaur S, Kotaki M, Ma Z, Gopal R, Ramakrishna S, Ng SC (2006) Oligosaccharide functionalized nanofibrous membrane. Int J Nanosci 5:1–11

  33. 33.

    Singh G, Rana D, Matsuura T, Ramakrishna S, Narbaitz RM, Tabe S (2010) Removal of disinfection by-products in water by carbonized nanofiber membranes. Sep Purif Technol 74:202–212

  34. 34.

    Nakagawa K, Ishida Y (1973) Annealing effect in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry and electron microscopy. J Polym Sci Polym Phys Ed 11:2153–2173

  35. 35.

    Dohany JE, LE Robb (1980) Poly(vinylidene fluoride). In: Othmer DF (ed) Kirk-Othmer encyclopaedia of chemical technology, vol. 11, 3rd edn. Wiley, New York, pp 64–74

  36. 36.

    Glennon D, Smith JR, Nevell RT, Begg D, Mason SE, Watson KL, Tsibouklis J (1997) An atomic force microscopy study of the effect of tensile loading and elevated temperature on polyvinylidene fluoride from flexible oil pipelines. J Mater Sci 32:6227–6234. doi:10.1023/A:1018680909681

  37. 37.

    Matsuura T (1994) Synthetic membranes and membrane separation process. CRC, Boca Raton

  38. 38.

    Suen S-Y, Etzel MR (1992) A mathematical analysis of affinity membrane bioseparations. Chem Eng Sci 47:1355–1364

  39. 39.

    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

  40. 40.

    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

  41. 41.

    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

  42. 42.

    Prince JA, Rana D, Singh G, Matsuura T, Jun Kai T, Shanmugasundaram TS (2014) Effect of hydrophobic surface modifying macromolecules on poly(vinylidene fluoride) membrane for direct contact membrane distillation. Chem Eng J 242:387–396

  43. 43.

    Savoji H, Rana D, Matsuura T, Tabe S, Feng C (2013) Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene fluoride) membranes for solute separation. Sep Purif Technol 108:196–204

  44. 44.

    Prince JA, Singh G, Rana D, Matsuura T, Anbharasi V, Shanmugasundaram TS (2012) Preparation and characterization of highly hydrophobic poly(vinylidene fluoride)—clay nanocomposite electrospun nanofiber membranes for desalination using direct contact membrane distillation. J Membr Sci 397–398:80–86

  45. 45.

    Feng C, Khulbe KC, Matsuura T, Gopal R, Kaur S, Ramakrishna S, Khayet M (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membr Sci 311:1–6

  46. 46.

    Feng C, Khulbe KC, Tabe S (2012) Volatile organic compound removal by membrane gas stripping using electro-spun nanofiber membrane. Desalination 287:98–102

  47. 47.

    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York

  48. 48.

    Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp, Norcross

  49. 49.

    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

  50. 50.

    Dehl RE (1982) On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry. J Biomed Mater Res 16:715–719

  51. 51.

    Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR (2003) Transport properties of electrospun nylon 6 nonwoven mats. Eur Polym J 39:1883–1889

  52. 52.

    Jena A, Gupta K (2002) Characterization of pore structure of filtration media. Fluid/Particle Sep J 14:227–241

  53. 53.

    Dickenson C (1992) Filters and filtration handbook, 3rd edn. Elsevier, Oxford

  54. 54.

    Hota G, Rajesh Kumar B, Ng WJ, Ramakrishna S (2008) Fabrication and characterization of a boehmite nanoparticle impregnated electrospun fiber membrane for removal of metal ions. J Mater Sci 43:212–217. doi:10.1007/s10853-007-2142-4

  55. 55.

    Xiao S, Hui M, Shen M, Wang S, Huang Q, Shi X (2011) Excellent copper (II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surf A 381:48–54

  56. 56.

    Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407. doi:10.1007/s10853-007-1786-4

  57. 57.

    Miao Y-E, Wang R, Chen D, Liu Z, Liu T (2012) Electrospun self-standing membrane of hierarchical SiO2@γ-AlOOH (Boehmite) core/sheath fibers for water remediation. ACS Appl Mater Interfaces 4:5353–5359

  58. 58.

    Royen PV, Schacht E, Ruys L, Vaeck LV (2006) Static secondary ion mass spectrometry for nanoscale analysis of electrospun nanofibres, surface characterisation. Rapid Commun Mass Spectrom 20:346–352

Download references


The authors gratefully acknowledge the financial support from the Environment and Water Industry (EWI) Development Council (Govt. of Singapore), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ministry of Environment, Ontario, Canada.

Author information

Correspondence to Subramanian Sundarrajan or Dipak Rana or Seeram Ramakrishna.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, S., Sundarrajan, S., Rana, D. et al. Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49, 6143–6159 (2014).

Download citation


  • PVDF
  • Water Contact Angle
  • Boehmite
  • Nanofibrous Membrane
  • Average Fiber Diameter