Journal of Materials Science

, Volume 49, Issue 17, pp 5899–5909 | Cite as

WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3)

  • Majid Ahmadi
  • Satyaprakash Sahoo
  • Reza Younesi
  • Anand P. S. Gaur
  • Ram S. Katiyar
  • Maxime J-F Guinel


Tungsten oxide (WO3) nano-ribbons (NRs) were obtained by annealing tungstite (WO3·H2O) NRs. The latter was synthesized below room temperature using a simple, environmentally benign, and low cost aging treatment of precursors made by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4·2H2O). WO3 generates significant interests and is being used in a growing variety of applications. It is therefore important to identify suitable methods of production and better understand its properties. The phase transformation was observed to be initiated between 200 and 300 °C, and the crystallographic structure of the NRs changed from orthorhombic WO3·H2O to monoclinic WO3. It was rigorously studied by annealing a series of samples ex situ in ambient air up to 800 °C and characterizing them afterward. A temperature-dependent Raman spectroscopy study was performed on tungstite NRs between minus 180 and 700 °C. Also, in situ heating experiments in the transmission electron microscope allowed for the direct observation of the phase transformation. Powder X-ray diffraction, electron diffraction, electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize precisely this transformation.

Supplementary material

10853_2014_8304_MOESM1_ESM.docx (242 kb)
Supplementary material 1 (DOCX 242 kb)
10853_2014_8304_MOESM2_ESM.tif (6.6 mb)
Supplementary material 2 (TIFF 6795 kb)
10853_2014_8304_MOESM3_ESM.tif (4.5 mb)
Supplementary material 3 (TIFF 4647 kb)


  1. 1.
    Chatten R, Chadwick AV, Rougier A, Lindan PhJD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B 109(8):3146–3156CrossRefGoogle Scholar
  2. 2.
    Soultanidis N, Zhou W, Kiely CJ, Wong MS (2012) Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28:17771–17777CrossRefGoogle Scholar
  3. 3.
    Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films:  synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649CrossRefGoogle Scholar
  4. 4.
    Guo Ch, Yin Sh, Huang Y, Dong Q, Sato T (2011) Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 27:12172–12178CrossRefGoogle Scholar
  5. 5.
    Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26(24):19148–19152CrossRefGoogle Scholar
  6. 6.
    Hara K, Zhao ZhG, Cui Y, Miyauchi M, Miyashita M, Mori Sh (2011) Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27:12730–12736CrossRefGoogle Scholar
  7. 7.
    Costa C, Pinheiro C, Henriques I, Laia CAT (2012) Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl Mater Interfaces 4:1330–1340CrossRefGoogle Scholar
  8. 8.
    Wood V, Panzer MJ, Halpert JE, Caruge J-M, Bawendi MG, Bulovic V (2009) Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3(11):3581–3586CrossRefGoogle Scholar
  9. 9.
    Srinivasan A, Miyauchi M (2012) Chemically stable WO3 based thin-film for visible-light induced oxidation and superhydrophilicity. J Phys Chem C 116:15421–15426CrossRefGoogle Scholar
  10. 10.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefGoogle Scholar
  11. 11.
    Ahmed S, Hassan IAI, Roy H, Marken F (2013) Photoelectrochemical transients for chlorine/hypochlorite formation at “roll-on” nano-WO3 film electrodes. J Phys Chem C 117:7005–7012CrossRefGoogle Scholar
  12. 12.
    Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3photoanodes for photoelectrochemical watersplitting. Phys Chem Chem Phys 14:7894–7911CrossRefGoogle Scholar
  13. 13.
    Chen X, Ye J, Ouyang Sh, Kako T, Li Zh, Zou Zh (2011) Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5(6):4310–4318CrossRefGoogle Scholar
  14. 14.
    Walter MG, Warren EL, McKone JR, Boettcher ShW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  15. 15.
    Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868CrossRefGoogle Scholar
  16. 16.
    Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K (2008) Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem Lett 37(2):138–139CrossRefGoogle Scholar
  17. 17.
    Liu Y, Shrestha S, Mustain WE (2012) Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal 2:456–463CrossRefGoogle Scholar
  18. 18.
    Waller MR, Townsend TK, Zhao J, Sabio EM, Chamousis RL, Browning ND, Osterloh FE (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem Mater 24:698–704CrossRefGoogle Scholar
  19. 19.
    Coridan RH, Shaner M, Wiggenhorn C, Brunschwig BS, Lewis NS (2013) Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J Phys Chem C 117:6949–6957CrossRefGoogle Scholar
  20. 20.
    Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933CrossRefGoogle Scholar
  21. 21.
    Wang A, Zhang T (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc Chem Res 2013(46):1377–1386CrossRefGoogle Scholar
  22. 22.
    Cui X, Shi J, Chen H, Zhang L, Guo L, Gao J, Li J (2008) Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J Phys Chem B 112:12024–12031CrossRefGoogle Scholar
  23. 23.
    Li Zh, Smid B, Kim YK, Matolin V, Kay BD, Rousseau R, Dohnalek Z (2012) Alcohol dehydration on monooxo W=O and dioxo O=W=O species. J Phys Chem Lett 3:2168–2172CrossRefGoogle Scholar
  24. 24.
    Li D, Wu G, Gao G, Shen J, Huang F (2011) Ultrafast coloring-bleaching performance of nanoporous WO3-SiO2 gasochromic films doped with Pd catalyst. ACS Appl Mater Interfaces 3:4573–4579CrossRefGoogle Scholar
  25. 25.
    Filho AGS, Filho JM, Freire VN, Ayala AP, Sasaki JM, Freire PTC, Melo FEA, Juliao JF, Gomes UU (2001) Phase transition in WO3 microcrystals obtained by sintering process. J Raman Spectrosc 32:695–699CrossRefGoogle Scholar
  26. 26.
    Salje E, Viswanathan K (1975) Physical properties and phase transitions in WO3. Acta Cryst A31:356–359CrossRefGoogle Scholar
  27. 27.
    Salje E (1977) The orthorhombic phase of WO3. Acta Cryst B33:574–577CrossRefGoogle Scholar
  28. 28.
    Hirose T (1980) Structural phase transitions and semiconductor-metal transition in WO3. J.Phys Soc Jpn 49(2):562–568CrossRefGoogle Scholar
  29. 29.
    Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) Structural stability and phase transitions in WO3 thin films. J Phys Chem B 110:10430–10435CrossRefGoogle Scholar
  30. 30.
    Vemuri RS, Kamala Bharathi K, Gullapalli SK, Ramana CV (2010) Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl. Mater. Interfaces 2(9):2623–2628CrossRefGoogle Scholar
  31. 31.
    In J, Yoo Y, Kim JG, Seo K, Kim H, Ihee H, Oh SH, Kim B (2010) In situ TEM observation of heterogeneous phase transition of a constrained single-crystalline Ag2Te nanowire. Nano Lett 10:4501–4504CrossRefGoogle Scholar
  32. 32.
    Delalande M, Guinel M, Allard LF, Delattre A, Bris R, Samson Y, Guillemaud P, Reiss P (2012) L10 Ordering of ultrasmall FePt nanoparticles revealed by TEM in situ annealing. J Phys Chem C 116:6866–6872CrossRefGoogle Scholar
  33. 33.
    Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M (2007) Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram Int 33:931–936CrossRefGoogle Scholar
  34. 34.
    Ahmadi M, Guinel M (2014) Synthesis and characterization of tungstite (WO3·H2O) nanoleaves and nanoribbons. Acta Mater 69:203–209CrossRefGoogle Scholar
  35. 35.
    Merchan WM, Farahani MF, Rosenberg ZM (2014) Electron beam induced formation of tungsten sub-oxide nanorods from flame-formed fragments. Micron 57:23–30CrossRefGoogle Scholar
  36. 36.
    Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409CrossRefGoogle Scholar
  37. 37.
    Wolcott A, Kuykendall TR, Chen W, Chen Sh, Zhang JZ (2006) Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain. J Phys Chem B 110:25288–25296CrossRefGoogle Scholar
  38. 38.
    Szymanski JT, Roberts AC (1984) The Crystal Structure of Tungstite, WO3·H2O. Canadian Minerologist 22:681–688Google Scholar
  39. 39.
    Loopstra BO, Boldrini P (1966) Neutron diffraction investigation of WO3. Acta Cryst 21:158–162CrossRefGoogle Scholar
  40. 40.
    A.F. Holleman, E. Wiberg, N. Wiberg, “Inorganic chemistry”, Academic Press; Berlin; New York: Walter De Gruyter, San Diego, 2001, p.1389.Google Scholar
  41. 41.
    Baek Y, Yong K (2007) Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J Phys Chem C 111(3):1213–1218CrossRefGoogle Scholar
  42. 42.
    Sefat AS, Amow G, Wu MY, Botton GA, Greedan JE, Solid J (2005) High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x=0 to 0.33. J Solid State Chem 178(4):1008–1016Google Scholar
  43. 43.
    Ahn CC, Rez P (1985) Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy 17:105–115CrossRefGoogle Scholar
  44. 44.
    Jollet F, Petit T, Gota S, Thromat N, Soyer Gautier M, Pasturel A (1997) The electronic structure of uranium dioxide: an oxygen K-edge x-ray absorption study. J Phys 9:9393–9401Google Scholar
  45. 45.
    Harvey A, Guo B, Kennedy I, Risbud S, Leppert V (2006) A systematic study of the oxygen K edge in the cubic and less common monoclinic phases of the rare earth oxides (Ho, Er, Tm, Yb) by electon energy loss spectroscopy. J Phys 18:2181–2189Google Scholar
  46. 46.
    McComb DW (1996) Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy. Phys Rev B 54:7094–7120CrossRefGoogle Scholar
  47. 47.
    Kozicki MN, Gopalan C, Balakrishnan M, Mitkova M (2006) A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans Nanotechnol 5(5):535–544Google Scholar
  48. 48.
    Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130:7780–7781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Majid Ahmadi
    • 1
  • Satyaprakash Sahoo
    • 1
  • Reza Younesi
    • 2
  • Anand P. S. Gaur
    • 1
  • Ram S. Katiyar
    • 1
  • Maxime J-F Guinel
    • 1
    • 3
  1. 1.Department of Physics, College of Natural SciencesUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  3. 3.Department of Chemistry, College of Natural SciencesUniversity of Puerto RicoSan JuanUSA

Personalised recommendations