Journal of Materials Science

, Volume 49, Issue 16, pp 5676–5689 | Cite as

Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst

  • Xuan Hoan Vu
  • Ursula Bentrup
  • Michael Hunger
  • Ralph Kraehnert
  • Udo Armbruster
  • Andreas MartinEmail author


Nanosized-ZSM-5/SBA-15 analog composites (ZSC) were successfully synthesized in a two-step process from zeolite seed solutions containing intact ZSM-5 nanocrystals (nano-ZSM-5) by high-temperature synthesis in mild acidic media (200 °C, pH 3.5). The ZSC solids exhibit domains of nano-ZSM-5 blended homogeneously with highly condensed, well-ordered mesoporous SBA-15 analogs containing zeolite building units. The content of nano-ZSM-5 phase and SBA-15 analog phase can be controlled by a single synthesis parameter, i.e., the precrystallization time of the initially formed zeolite seed solution. Compared to conventional Al-SBA-15, the acidic properties, particularly the surface density of strong Brønsted acid sites, of the ZSC are significantly improved while its micro-/mesostructures are well maintained even upon steaming at 800 °C for 24 h. The catalytic activity of the ZSC solids compared to that of commercial ZSM-5 and Al-SBA-15 samples was evaluated in the gas phase cracking of cumene and 1,3,5-tri-isopropylbenzene (TIPB) as probe reactions. The results show that the ZSC materials are effective for the conversion of both cumene and TIPB due to the increased density of the Brønsted acid sites with high accessibility provided by well-dispersed nano-ZSM-5 in the mesoporous SBA-15 analog matrix.


Zeolite Acid Site Cumene Fluid Catalytic Crack Hydrothermal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. M.-M. Pohl for recording TEM images, Dr. M. Schneider for XRD measurements, Mr. R. Eckelt for N2 adsorption and desorption studies; Dr. D.-L. Hoang and Dr. N. Steinfeldt are acknowledged for their help to carry out NH3-TPD and WAXS/SAXS measurements, respectively. X.-H Vu would like to thank VIED and LIKAT for financial support.

Supplementary material

10853_2014_8287_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1460 kb)


  1. 1.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419CrossRefGoogle Scholar
  2. 2.
    Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542CrossRefGoogle Scholar
  3. 3.
    Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910CrossRefGoogle Scholar
  4. 4.
    Mintova S, Gilson JP, Valtchev V (2013) Advances in nanosized zeolites. Nanoscale 5:6693–6703CrossRefGoogle Scholar
  5. 5.
    Viswanadham N, Kamble R, Singh M, Kumar M, Murali Dhar G (2009) Catalytic properties of nano-sized ZSM-5 aggregates. Catal Today 141:182–186CrossRefGoogle Scholar
  6. 6.
    Morales-Pacheco P, Domínguez JM, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene. Catal Today 166:25–38CrossRefGoogle Scholar
  7. 7.
    Serrano DP, Aguado J, Morales G, Rodríguez JM, Peral A, Thommes M, Epping JD, Chmelka BF (2009) Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem Mater 21:641–654CrossRefGoogle Scholar
  8. 8.
    Waller P, Shan Z, Marchese L, Tartaglione G, Zhou W, Jansen JC, Maschmeyer T (2004) Zeolite nanocrystals inside mesoporous TUD-1: a high-performance catalytic composite. Chem Eur J 10:4970–4976CrossRefGoogle Scholar
  9. 9.
    Frunz L, Prins R, Pirngruber GD (2006) ZSM-5 precursors assembled to a mesoporous structure and its subsequent transformation into a zeolitic phase-from low to high catalytic activity. Micropor Mesopor Mater 88:152–162CrossRefGoogle Scholar
  10. 10.
    Landau MV, Tavor D, Regev O, Kaliya ML, Herskowitz M, Valtchev V, Mintova S (1999) Colloidal nanocrystals of zeolite β stabilized in alumina matrix. Chem Mater 11:2030–2037CrossRefGoogle Scholar
  11. 11.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  12. 12.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  13. 13.
    Liu Y, Pinnavaia TJ (2002) Aluminosilicate mesostructures with improved acidity and hydrothermal stability. J Mater Chem 12:3179–3190CrossRefGoogle Scholar
  14. 14.
    Čejka J, Mintova S (2007) Perspectives of micro/mesoporous composites in catalysis. Catal Rev Sci Eng 49:457–509CrossRefGoogle Scholar
  15. 15.
    Liu Y, Zhang W, Pinnavaia TJ (2001) Steam stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew Chem 113:1295–1298CrossRefGoogle Scholar
  16. 16.
    Han Y, Wu S, Sun Y, Li D, Xiao FS, Liu J, Zhang X (2002) Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chem Mater 14:1144–1148CrossRefGoogle Scholar
  17. 17.
    Gu FN, Wei F, Yang JY, Lin N, Lin WG, Wang Y, Zhu JH (2010) New strategy to synthesis of hierarchical mesoporous zeolites. Chem Mater 22:2442–2450CrossRefGoogle Scholar
  18. 18.
    Bagshaw SA, Baxter NI, Brew DRM, Hosie CF, Yuntong N, Jaenicke S, Khuan CG (2006) Highly ordered mesoporous MSU-SBEA/zeolite beta composite material. J Mater Chem 16:2235–2244CrossRefGoogle Scholar
  19. 19.
    Wang J, Groen JC, Yue W, Zhou W, Coppens MO (2008) Facile synthesis of ZSM-5 composites with hierarchical porosity. J Mater Chem 18:468–474CrossRefGoogle Scholar
  20. 20.
    Xia Y, Mokaya R (2004) On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J Mater Chem 14:863–870CrossRefGoogle Scholar
  21. 21.
    Xia Y, Mokaya R (2004) Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. J Mater Chem 14:3427–3435CrossRefGoogle Scholar
  22. 22.
    Liu L, Xiong G, Wang X, Cai J, Zhao Z (2009) Direct synthesis of disordered micro–mesoporous molecular sieve. Micropor Mesopor Mater 123:221–227CrossRefGoogle Scholar
  23. 23.
    Lee DS, Liu TK (2001) Synthesis of micropore/mesopore composite materials. React Kinet Catal Lett 72:209–218CrossRefGoogle Scholar
  24. 24.
    Vu XH, Steinfeldt N, Armbruster U, Martin A (2012) Improved hydrothermal stability and acidic properties of ordered mesoporous SBA-15 analogs assembled from nanosized ZSM-5 precursors. Micropor Mesopor Mater 164:120–126CrossRefGoogle Scholar
  25. 25.
    Tokay B, Somer M, Erdem-Şenatalar A, Schüth F, Thompson RW (2009) Nanoparticle silicalite-1 crystallization from clear solutions: nucleation. Micropor Mesopor Mater 118:143–151CrossRefGoogle Scholar
  26. 26.
    Petkov N, Hölzl M, Metzger TH, Mintova S, Bein T (2005) Ordered micro/mesoporous composite prepared as thin films. J Phys Chem B 109:4485–4491CrossRefGoogle Scholar
  27. 27.
    Huang L, Guo W, Deng P, Xue Z, Li Q (2000) Investigation of synthesizing MCM-41/ZSM-5 composites. J Phys Chem B 104:2817–2823CrossRefGoogle Scholar
  28. 28.
    Jacobsen CJH, Madsen C, Janssens TVW, Jakobsen HJ, Skibsted J (2000) Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Micropor Mesopor Mater 39:393–401CrossRefGoogle Scholar
  29. 29.
    Guo W, Xiong C, Huang L, Li Q (2001) Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures. J Mater Chem 11:1886–1890CrossRefGoogle Scholar
  30. 30.
    Pan D, Yuan P, Zhao L, Liu N, Zhou L, Wei G, Zhang J, Ling Y, Fan Y, Wei B, Liu H, Yu C, Bao X (2009) New understanding and simple approach to synthesize highly hydrothermally stable and ordered mesoporous materials. Chem Mater 21:5413–5425CrossRefGoogle Scholar
  31. 31.
    Xue Z, Zhang T, Ma J, Miao H, Fan W, Zhang Y, Li R (2012) Accessibility and catalysis of acidic sites in hierarchical ZSM-5 prepared by silanization. Micropor Mesopor Mater 151:271–276CrossRefGoogle Scholar
  32. 32.
    Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279:366–380CrossRefGoogle Scholar
  33. 33.
    Luan Z, Fournier JA (2005) In situ FTIR spectroscopic investigation of active sites and adsorbate interactions in mesoporous aluminosilicate SBA-15 molecular sieves. Micropor Mesopor Mater 79:235–240CrossRefGoogle Scholar
  34. 34.
    Crepeau G, Montouillout V, Vimont A, Mariey L, Cseri T, Mauge F (2006) Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. J Phys Chem B 110:15172–15185CrossRefGoogle Scholar
  35. 35.
    Chen YM (2006) Recent advances in FCC technology. Powder Technol 163:2–8CrossRefGoogle Scholar
  36. 36.
    Harding RH, Peters AW, Nee JRD (2001) New developments in FCC catalyst technology. Appl Catal A 221:389–396CrossRefGoogle Scholar
  37. 37.
    Corma A, Wojciechowski BW (1982) The catalytic cracking of cumene. Catal Rev Sci Eng 24:1–65CrossRefGoogle Scholar
  38. 38.
    Kumaran GM, Garg S, Soni K, Kumar M, Gupta JK, Sharma LD, Rao KSR, Dhar GM (2008) Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios. Micropor Mesopor Mater 114:103–109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xuan Hoan Vu
    • 1
  • Ursula Bentrup
    • 1
  • Michael Hunger
    • 2
  • Ralph Kraehnert
    • 3
  • Udo Armbruster
    • 1
  • Andreas Martin
    • 1
    Email author
  1. 1.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany
  2. 2.Institute of Chemical TechnologyUniversity of StuttgartStuttgartGermany
  3. 3.Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations