Advertisement

Journal of Materials Science

, Volume 49, Issue 15, pp 5378–5387 | Cite as

α-Fe2O3 /(PVA + PEG) Nanocomposite films; synthesis, optical, and dielectric characterizations

  • A. M. El SayedEmail author
  • W. M. Morsi
Article

Abstract

Hematite (α-Fe2O3) nanorods with an average diameter of 40 nm were prepared using a template-free sol–gel method. These nanorods then mixed with polyvinyl alcohol (PVA)/polyethylene glycol (PEG) blend at concentrations of 0.0, 0.5, and 1.0 wt.%. The transmittance percentage (T%) of the films showed a decrease from 80.26 to 33.24 %. The direct optical band gap also decreased from 5.28 to 4.83 eV whereas the refractive index significantly increased with increasing the hematite content. The dielectric measurements were performed in the temperature range 303–413 K and frequency range 30 kHz–3.0 MHz. According to the temperature dependence of the dielectric constant (ε’), α a -relaxation peaks observed in all films and assigned to the micro-Brownian motion of the polymer blend chains. The behavior of the ac conductivity, σ ac (f), of the nanocomposite films indicated that the homogenous distribution of α-Fe2O3 nanorods allows the formation of conductive three-dimensional networks throughout the nanocomposite film. Also, indicated that the correlated barrier hopping is the most suitable conduction mechanism.

Keywords

Hematite Nanocomposite Film Hematite Content Indirect Optical Transition Interpositional Arthroplasty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627CrossRefGoogle Scholar
  2. 2.
    X-Qiang Liu, Wang Y, Yang W, Liu Z-Y, Luo Y, Xie B-Hu, Yang M-B (2012) Control of morphology and properties by the selective distribution of nano-silica particles with different surface characteristics in PA6/ABS blends. J Mater Sci 47:4620–4631. doi: 10.1007/s10853-012-6327-0 CrossRefGoogle Scholar
  3. 3.
    Kumar E, Selvarajan P, Muthuraj D (2012) Preparation and characterization of polyaniline/cerium dioxide (CeO2) nanocomposite via in situ polymerization. J Mater Sci 47:7148–7156CrossRefGoogle Scholar
  4. 4.
    Nandi D, Ghosh AK, De A, Sen P, Ghosh UC (2014) Fabrication, nanostructure evaluation, 3D electrical transport and electrochemical capacitance of PEDOT–Ti(IV)-doped iron(III) oxide nanocomposite. J Mater Sci 49:776–785. doi: 10.1007/s10853-013-7760-4 CrossRefGoogle Scholar
  5. 5.
    Su J, Li Y, Wang K, Fu Q (2014) Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. J Mater Sci 49:1794–1804. doi: 10.1007/s10853-013-7867-7 CrossRefGoogle Scholar
  6. 6.
    El Sayed AM, Diab HM, El-Mallawany R (2013) Controlling the dielectric and optical properties of PVA/PEG polymer blend via e-beam irradiation. J Polym Res 20:1–10CrossRefGoogle Scholar
  7. 7.
    Guo Z, Zhang D, Wei S, Wang Z, Karki AB, Li Y, Bernazzani P, Young DP, Gomes JA, Cocke DL, Ho TC (2010) Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film. J Nanopart Res 12:2415–2426CrossRefGoogle Scholar
  8. 8.
    El Sayed AM, Morsi WM (2013) Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Polym Compos 34:2031–2039CrossRefGoogle Scholar
  9. 9.
    Zare Y (2013) Recent progress on preparation and properties of nanocomposites from recycled polymers: a review. Waste Manag 33:598–604CrossRefGoogle Scholar
  10. 10.
    Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polym Res 20:210CrossRefGoogle Scholar
  11. 11.
    Sedlarık V, Saha N, Kuritka I, Saha P (2006) Characterization of polymeric biocomposite based on poly(vinyl alcohol) and poly(vinyl pyrrolidone). Polym Compos 27:147–152CrossRefGoogle Scholar
  12. 12.
    Sheha E, Khoder H, Shanap TS, El-Shaarawy MG, El Mansy MK (2012) Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik 123:1161–1166CrossRefGoogle Scholar
  13. 13.
    Zalipsky S (1995) Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev 16:157–182CrossRefGoogle Scholar
  14. 14.
    Chuang W-T, Shih K-S, Hong P-D (2005) Kinetics of phase separation in poly(ε-caprolactone)/poly(ethylene glycol) blends. J Polym Res 12:197–204CrossRefGoogle Scholar
  15. 15.
    Miranda TMR, Goncalves AR, Amorim MTP (2001) Ultraviolet-induced crosslinking of poly (vinyl alcohol) evaluated by principal component analysis of FTIR spectra. Polym Int 50:1068–1072CrossRefGoogle Scholar
  16. 16.
    Lin H, Wagner EV, Swinnea JS, Freeman BD, Pas SJ, Hill AJ, Kalakkunnath S, Kalika DS (2006) Transport and structural characteristics of crosslinked poly (ethylene oxide) rubbers. J Membr Sci 276:145–161CrossRefGoogle Scholar
  17. 17.
    B-Senturk H, Choi J, Oral E, Kung JH, Macias CE, Braithwaite G, Muratoglu OK (2008) The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials 29:141–149CrossRefGoogle Scholar
  18. 18.
    Park J-Seok, Akim H, Choi J-B, Gwon H-J, Shin Y-M, Lim Y-M, Khil MS, Nho Y-C (2012) Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray. Radiat Phys Chem 81:857–860CrossRefGoogle Scholar
  19. 19.
    Zhang X, Guo X, Yang S, Tan S, Li X, Dai H, Yu X, Zhang X, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070CrossRefGoogle Scholar
  20. 20.
    Wang X, Zhang L, Ni Y, Hong J, Cao X (2009) Fast preparation, characterization, and property study of α-Fe2O3 nanoparticles via a simple solution-combusting method. J Phys Chem C 113:7003–7008CrossRefGoogle Scholar
  21. 21.
    Peng D, Beysen S, Li Q, Sun Y, Yang L (2010) Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology 8:386–389CrossRefGoogle Scholar
  22. 22.
    Mohammadikish M (2014) Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceram Int 40:1351–1358CrossRefGoogle Scholar
  23. 23.
    Cuong ND, Hoa ND, Hoa TT, Khieu DQ, Quang DT, Quang VV, Hieu NV (2014) Nanoporous hematite nanoparticles: synthesis and applications for benzylation of benzene and aromatic compounds. J Alloys Compd 582:83–87CrossRefGoogle Scholar
  24. 24.
    Bandara J, Klehm U, Ki W (2007) Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Appl Catal B Environ 76:73–81CrossRefGoogle Scholar
  25. 25.
    Sun P, Wang W, Liu Y, Sun Y, Ma J, Lu G (2012) Hydrothermal synthesis of 3D urchin-like α-Fe2O nanostructure for gas sensor. Sens Actuat B Chem 173:52–57CrossRefGoogle Scholar
  26. 26.
    Liu Z, Lva B, Wu D, Sun Y, Xu Y (2013) Magnetic and electrochemical behavior of rhombohedral α-Fe2O3 nanoparticles with (104) dominant facets. Particuology 11:327–333CrossRefGoogle Scholar
  27. 27.
    Ahmmad B, Leonard K, Islam MdS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol 24:160–167CrossRefGoogle Scholar
  28. 28.
    Valvo M, Lindgren F, Lafont U, Björefors F, Edström K (2014) Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. J Power Sources 245:967–978CrossRefGoogle Scholar
  29. 29.
    Dong W, Zhu C (2002) Use of ethylene oxide in the sol–gel synthesis of a-Fe2O3 nanoparticles from Fe(III) salts. J Mater Chem 12:1676–1683CrossRefGoogle Scholar
  30. 30.
    Nurhayati T, Iskandar F, Abdullah M, Khairurrijal (2013) Syntheses of hematite (α-Fe2O3) nanoparticles using microwave-assisted calcination method. Mater Sci Forum 737:197–203CrossRefGoogle Scholar
  31. 31.
    Yan H, Su X, Yang C, Wang J, Niu C (2014) Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram Int 40:1729–1733CrossRefGoogle Scholar
  32. 32.
    Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, L-Robert C, Sanchez C (2012) Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation. Phys Chem Chem Phys 14:13224–13232CrossRefGoogle Scholar
  33. 33.
    C-Franco G, Eastman M, Ramana CV (2013) Structure and optical properties of iron oxide films prepared by a modified wet-chemical method. Ceram Int 39:4581–4587CrossRefGoogle Scholar
  34. 34.
    Chakrabarty S, Chatterjee K (2013) Oriented growth of α-Fe2O3 nanocrystals with different morphology and their optical behavior. J Cryst Growth 381:107–113CrossRefGoogle Scholar
  35. 35.
    Song L, Zhang S, Chen B, Ge J, Jia X (2010) A hydrothermal method for preparation of α-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium perchlorate. Colloid Surf A 360:1–5CrossRefGoogle Scholar
  36. 36.
    Patil D, Patil V, Patil P (2011) Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens Actuat B Chem 152:299–306CrossRefGoogle Scholar
  37. 37.
    Liu G, Li L, Yang X (2008) Preparation of ellipsoidal hematite/polymer hybrid materials and the corresponding hollow polymer ellipsoids. Polymer 49:4776–4783CrossRefGoogle Scholar
  38. 38.
    Dudic D, M-Cincovic´ M, Nedeljkovic JM, Djokovic V (2008) Electrical properties of a composite comprising epoxy resin and a -hematite nanorods. Polymer 49:4000–4008CrossRefGoogle Scholar
  39. 39.
    Rao TR, Omkaram I, Sumalatha B, Brahmam KV, Raju ChL (2012) Electron paramagnetic resonance and optical absorption studies of manganese ions doped in polyvinyl (alcohol) complexed with polyethylene glycol polymer films. Ionics 18:695–701CrossRefGoogle Scholar
  40. 40.
    Wang LB, Song LX, Dang Z, Chen J, Yang J, Zeng J (2012) Controlled growth and magnetic properties of α-Fe2O3 nanocrystals: octahedra, cuboctahedra and truncated cubes. CrystEngComm 14:3355–3358CrossRefGoogle Scholar
  41. 41.
    Ghanipour M, Dorranian D (2013) Effect of ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J Nanomater, Article ID 897043,10. http://dx.doi.org/10.1155/2013/897043
  42. 42.
    Mallakpour S, Madani M (2011) Use of l-tyrosine amino acid as biomodifier of Cloisite Na+ for preparation of novel poly(vinyl alcohol)/organoclay bionanocomposites film. J Mater Sci 46:4071–4078. doi: 10.1007/s10853-011-5336-8 CrossRefGoogle Scholar
  43. 43.
    Yahia IS, Farag AAM, Cavas M, Yakuphanoglu F (2013) Effects of stabilizer ratio on the optical constants and optical dispersion parameters of ZnO nano-fiber thin films. Superlatt Microstruct 53:63–75CrossRefGoogle Scholar
  44. 44.
    Mahmoud WE, Al-Ghamdi AA, Al-Heniti S, Al-Ameer S (2010) The influence of temperature on the structure of Cd-doped ZnO nanopowders. J Alloys Compd 491:742–746CrossRefGoogle Scholar
  45. 45.
    Wen R, Wang L, Wang X, Yue GH, Chen Y, Peng DL (2010) Influence of substrate temperature on mechanical, optical and electrical properties of ZnO:Al films. J Alloys Compd 508:370–374CrossRefGoogle Scholar
  46. 46.
    Dutta M, Mridha S, Basak D (2008) Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique. Appl Surf Sci 254:2743–2747CrossRefGoogle Scholar
  47. 47.
    Keskenler EF, Turgut G, Dogan S (2012) Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium. Superlatt Microstruct 52:107–115CrossRefGoogle Scholar
  48. 48.
    Aydın C, Abd El-Sadek MS, Zheng K, Yahia IS, Yakuphanoglu F (2013) Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Optics Laser Technol 48:447–452CrossRefGoogle Scholar
  49. 49.
    O’Leary SK, Zukotynski S, Perz JM (1997) Disorder and optical absorption in amorphous silicon and amorphous germanium. J Non-Cryst Solids 210:249–253CrossRefGoogle Scholar
  50. 50.
    Belal A, Amin M, Hassan H, Abd El-Mongy A, Kamal B, Ibrahim K (1994) The role of BaTiO3 on the dielectric properties of polyvinyl chloride. Phys Status Solidi A 144:k53–k57CrossRefGoogle Scholar
  51. 51.
    Hanafy TA (2008) Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J Appl Polym Sci 108:2540–2549CrossRefGoogle Scholar
  52. 52.
    Narula GK, Pillai PKC (1989) Dielectric and TSC study in a semi-compatible solution-mixed PVDF-PMMA blend. J Mater Sci Lett 8:608–611CrossRefGoogle Scholar
  53. 53.
    Rao V, Ashokan PV, Shridhar MH (2000) Studies of dielectric relaxation and ac conductivity in cellulose acetate hydrogen phthalate–poly(methyl methacrylate) blends. Mater Sci Eng A281:213–220CrossRefGoogle Scholar
  54. 54.
    Reddy ChVS, Han X, Zhu Q-Y, Mai L-Q, Chen W (2006) Dielectric spectroscopy studies on (PVP + PVA) polyblend film. Microelectron Eng 83:281–285CrossRefGoogle Scholar
  55. 55.
    Mahrous S (1996) Dielectric analysis of the α-relaxation of PVC stabilized with cadmium laurate. Polym Int 40:261–267CrossRefGoogle Scholar
  56. 56.
    Prajapati GK, Gupta PN (2011) Comparative study of the electrical and dielectric properties of PVA–PEG–Al2O3–MI (M = Na, K, Ag) complex polymer electrolytes. Physica B 406:3108–3113CrossRefGoogle Scholar
  57. 57.
    Raghu S, Kilarkaje S, Sanjeev G, Devendrappa H (2013) Electron beam induced modifications in conductivity and dielectric property of polymer electrolyte film. Radiat Meas 53–54:56–64CrossRefGoogle Scholar
  58. 58.
    Migahed MD, Ishra M, Fahmy T, Barakat A (2004) Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J Phys Chem Solids 65:1121–1125CrossRefGoogle Scholar
  59. 59.
    Ma F, Yuan N, Ding J (2013) The conductive network made up by the reduced graphene nanosheet/polyaniline/polyvinyl chloride. J Appl Polym Sci 128:3870–3875CrossRefGoogle Scholar
  60. 60.
    Elliott SR (1983) Physics of Amorphous Materials. Longman Group limited, EnglandGoogle Scholar
  61. 61.
    Balasundaram N, Mangalaraj D, Narayandass SK, Balasubramanian C (1992) Structure, dielectric, and AC conduction properties of amorphous germanium thin films. Phys Status Solidi A 130:141–151CrossRefGoogle Scholar
  62. 62.
    Kilinç N, Öztürk S, Arda L, Altindal A, Öztürk ZZ (2012) Structural, electrical transport and NO2 sensing properties of Y-doped ZnO thin films. J Alloys Compd 536:138–144CrossRefGoogle Scholar
  63. 63.
    Mohamed RI (2000) AC conductivity and dielectric constant of poly(vinyl alcohol) doped with MnSO4. J Phys Chem Solids 61:1357–1361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceFayoum UniversityFayoumEgypt
  2. 2.Building Physics Institute, Housing and Building National Research CenterGizaEgypt

Personalised recommendations