Advertisement

Journal of Materials Science

, Volume 49, Issue 15, pp 5324–5333 | Cite as

Effects of co-sintering in self-standing CGO/YSZ and CGO/ScYSZ dense bi-layers

  • Francesca TeocoliEmail author
  • De Wei Ni
  • Karen Brodersen
  • Søren Preben Vagn Foghmoes
  • Severine Ramousse
  • Vincenzo Esposito
Article

Abstract

Viscoelastic properties and sintering mechanisms of tape-casted gadolinium-doped ceria (CGO), yttrium-stabilized zirconia (YSZ), and scandium–yttrium-stabilized zirconia (ScYSZ) are characterized in order to investigate the reciprocal thermo-mechanical compatibility when arranged as a self-standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi-layers are critical due to the mismatch of thermo-mechanical and sintering properties among the materials. Despite the better sinteractivity of ScYSZ, the self-standing CGO/ScYSZ bi-layer presents more challenges in terms of densification compared with the CGO/YSZ bi-layer. In particular, above 1200 °C, ScYSZ and CGO show residual porosity, and at higher sintering temperatures, above 1300 °C, full densification is completely inhibited by constrained sintering phenomena.

Keywords

Shrinkage Rate Green Tape Zirconia Layer Shape Instability Viscosity Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would to acknowledge the EUDP (Danish Energy Agency) Project 64012-0225 “SOFC accelerated,” for sponsoring this research work. The authors are grateful to Tim Holgate for his help with the proofreading.

References

  1. 1.
    Jacobson A (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRefGoogle Scholar
  2. 2.
    Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16CrossRefGoogle Scholar
  3. 3.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  4. 4.
    Ivers-Tiffeé E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21:1805–1811CrossRefGoogle Scholar
  5. 5.
    Yohokowa H, Sakai N, Horita T, Yamaji K (2001) Recent developments in solid oxide fuel cell materials. Fuel Cells 1:117–131CrossRefGoogle Scholar
  6. 6.
    Kim-Lohsoontorn P, Laosiripojana N, Bae J (2011) Performance of solid oxide electrolysis cell having bi-layered electrolyte during steam electrolysis and carbon dioxide electrolysis. Curr Appl Phys 11:S223–S228CrossRefGoogle Scholar
  7. 7.
    Horita T, Sakai N, Yokokawa H, Dokiya M, Kawada T, Herle JV, Sasaki K (1997) Ceria–zirconia composite electrolyte for solid oxide fuel cells. J Electroceram 2:155–164Google Scholar
  8. 8.
    Tompsett GA, Sammes NM (1997) Ceria–yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. J Am Ceram Soc 80:3181–3186CrossRefGoogle Scholar
  9. 9.
    Tsoga A, Gupta A, Naoumidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240CrossRefGoogle Scholar
  10. 10.
    Tsoga A, Naoumidis A, Gupta A, Stöver D (1999) Microstructure and interdiffusion phenomena in YSZ–CGO composite electrolyte. Mater Sci Forum 308–311:794–799CrossRefGoogle Scholar
  11. 11.
    Sammes NM, Tompsett GA, Cai Z (1999) The chemical reaction between ceria and fully stabilized zirconia. Solid State Ion 121:121–125CrossRefGoogle Scholar
  12. 12.
    Tsoga A, Naoumidis A, Stöver D (2000) Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions. Solid State Ion 135:403–409CrossRefGoogle Scholar
  13. 13.
    Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714CrossRefGoogle Scholar
  14. 14.
    Zhou X-D, Scarfino B, Anderson HU (2004) Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ion 175:19–22CrossRefGoogle Scholar
  15. 15.
    Knibbe R, Hjelm J, Menon M, Pryds N, Søgaard M, Wang HJ, Neufeld K (2010) Cathode–electrolyte interfaces with CGO barrier layers in SOFC. J Am Ceram Soc 93:2877–2883CrossRefGoogle Scholar
  16. 16.
    Chang J, Guillon O, Rödel J, Kang S-KL (2008) Characterization of warpage behaviour of Gd-doped ceria/NiO–yttria stabilized zirconia bi-layer samples for solid oxide fuel cell application. J Power Sources 185:759–764CrossRefGoogle Scholar
  17. 17.
    Wang X, Tint S, Chiu M, Atkinson A (2012) Stiffness of free-standing thermal barrier coating top coats measured by bending tests. Acta Mater 60:3247–3258CrossRefGoogle Scholar
  18. 18.
    Atkinson A, Selçuk A (2000) Mechanical behavior of ceramic oxygen ion-conducting membranes. Solid State Ion 134:59–66CrossRefGoogle Scholar
  19. 19.
    Ni DW, Esposito V, Schmidt CG, Molla TT, Andersen KB, Kaiser A, Ramousse S, Pryds N (2013) Camber evolution and stress development of porous ceramic bi-layers during Co-firing. J Am Ceram Soc 96:972–978CrossRefGoogle Scholar
  20. 20.
    Lee SH, Messing GL, Green DJ (2004) Warpage evolution of screen printed multilayer ceramics during Co-firing. Key Eng Mater 264–268:321–328CrossRefGoogle Scholar
  21. 21.
    Howard SJ, Stewart RA, Clegg WJ (1996) Delamination of ceramic laminates due to residual thermal stresses. Key Eng Mater 116–117:331–350CrossRefGoogle Scholar
  22. 22.
    Venkatachari KR, Raj R (1986) Shear deformation and densification of powder compacts. J Am Ceram Soc 69:499–506CrossRefGoogle Scholar
  23. 23.
    Hsueh CH, Evans AG, Cannon RM, Brook RJ (1986) Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall 34:927–936CrossRefGoogle Scholar
  24. 24.
    Bordia RK, Raj R (1988) Sintering of TiO2–Al2O3 composites: a model experimental investigation. J Am Ceram Soc 71:302–310CrossRefGoogle Scholar
  25. 25.
    Cai PZ, Green DJ, Messing GL (1997) Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J Am Ceram Soc 80:445–452CrossRefGoogle Scholar
  26. 26.
    Lee S-H, Messing GL, Green DJ (2003) Bending creep test to measure the viscosity of porous materials during sintering. J Am Ceram Soc 86:877–882CrossRefGoogle Scholar
  27. 27.
    Bordia RK, Scherer GW (1988) On constrained sintering-I: constitutive model for a sintering body. On constrained sintering-II: comparison of constitutive models. On constrained sintering-III: rigid inclusions. Acta Metall 36:2393–2416CrossRefGoogle Scholar
  28. 28.
    Ni DW, Olevsky E, Esposito V, Molla TT, Foghmoes SPV, Bjørk R, Frandsen H, Aleksandrova E, Pryds N (2013) Sintering of multilayered porous structures: Part II—experiments and model applications. J Am Ceram Soc 96:2666–2673CrossRefGoogle Scholar
  29. 29.
    Ni DW, Schmidt CG, Teocoli F, Kaiser A, Andersen KB, Ramousse S, Esposito V (2013) Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95 tape cast layers: a comprehensive study on heuristic methods. J Eur Ceram Soc 33:2529–2530CrossRefGoogle Scholar
  30. 30.
    Raether F, Springer R, Beyer S (2001) Optical dilatometry for the control of microstructure development during sintering. Mater Res Innov 4:245–250CrossRefGoogle Scholar
  31. 31.
    Glasscock J, Esposito V, Foghmoes SPV, Stegk T, Matuschek D, Ley MWH, Ramousse S (2013) The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders. J Eur Ceram Soc 33:1289–1296CrossRefGoogle Scholar
  32. 32.
    Olevsky E (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R23:41–100CrossRefGoogle Scholar
  33. 33.
    Olevsky E, Molla TT, Frandsen HL, Bjørk R, Esposito V, Ni DW, Aleksandrova E, Pryds N (2013) Sintering of multilayered porous structures: Part I—constitutive models. J Am Ceram Soc 98:2657–2665CrossRefGoogle Scholar
  34. 34.
    Delporte M (2009) A phenomenological approach to the prediction of material behaviours during co-sintering. Ph.D. Thesis, Bayerische Julius-Maximilians-Universität, WürzburgGoogle Scholar
  35. 35.
    Bollina R, German RM (2004) In situ evaluation of viscosity during sintering of boron doped stainless steel using bending beam technique. Proceedings of world PM2004, Vienna. EPMA, ShrewsburyGoogle Scholar
  36. 36.
    Ollagnier J-B, Guillon O, Rödel J (2010) Constrained sintering of a glass ceramic composite: asymmetric laminate. J Am Ceram Soc 93:74–81CrossRefGoogle Scholar
  37. 37.
    Guillon O, Kraüs S, Rödel J (2007) Influence of thickness on the constrained sintering of alumina films. J Eur Ceram Soc 27:2623–2627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francesca Teocoli
    • 1
    Email author
  • De Wei Ni
    • 1
  • Karen Brodersen
    • 1
  • Søren Preben Vagn Foghmoes
    • 1
  • Severine Ramousse
    • 1
  • Vincenzo Esposito
    • 1
  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark

Personalised recommendations