Journal of Materials Science

, Volume 49, Issue 14, pp 5208–5217

Electronic band structure and optoelectronic properties of SrCu2X2 (X = As, Sb): DFT calculation

Article

Abstract

All-electron-full potential linear-augmented plane wave method with Engel Vosko approximation was used for calculating the electronic structure, Fermi surface, and optical properties of SrCu2X2 (X = As, Sb). The calculated band structure and Fermi surface show that the metallic behavior of SrCu2X2 increases as one move from As to Sb. The calculated partial density of states shows that As-s/p/d, Cu-s/p, and Sr-s/p/d states are forming the Fermi surface for SrCu2As2, whereas Sb-s/p/d, Cu-s/p, and Sr-s/p/d states are forming the Fermi surface for SrCu2Sb2. The calculated densities of states at Fermi level and electronic specific heat are 14.2 (42.57) states/Ryd-cell and 2.60 (7.37) mJ/mol K2 for SrCu2As2 (SrCu2Sb2). The complex optical dielectric function’s dispersion and the related optical properties such as refractive indices, extension coefficient, absorption coefficient, reflectivity, energy loss function, and optical conductivity were calculated and discussed in detail. The optical properties show a considerable anisotropy between the two components.

References

  1. 1.
    Yan YJ, Cheng P, Ying JJ, Luo XG, Chen F, Zou HY, Wang AF, Ye GJ, Xiang ZJ, Ma JQ, Chen XH (2013) Structural, magnetic, and electronic transport properties of hole-doped SrFe2−xCuxAs2 single crystals. Phys Rev B 87:075105-4Google Scholar
  2. 2.
    Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. American Society for Metals, Materials ParkGoogle Scholar
  3. 3.
    Ban Z, Sikirica M (1965) The crystal structure of ternary silicides ThM2Si2(M=Cr, Mn, Fe Co, Ni and Cu). Acta Crystallogr 18:594–599CrossRefGoogle Scholar
  4. 4.
    Shein IR, Ivanovskii AL (2009) Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A=Sr, Ba and Pn=P, As). Phys Rev B 79:054510-7Google Scholar
  5. 5.
    Mörsen E, Mosel BD, Müller-Warmuth W (1988) Mössbauer and magnetic susceptibility investigations of strontium, lanthanum and europium transition metal phosphides with ThCr2Si2 type structure. J Phys Chem Solids 49:785–795CrossRefGoogle Scholar
  6. 6.
    Ronning F, Kurita N, Bauer ED, Scott BL, Park T, Klimczuk T, Movshovich R, Thompson DJ (2008) The first order phase transition and superconductivity in BaNi2As2 single crystals. J Phys 20:342203–342207Google Scholar
  7. 7.
    Bauer ED, Ronning F, Scott BL, Thompson JD (2008) Superconductivity in SrNi2As2 single crystals. Phys Rev B 78:172504-3Google Scholar
  8. 8.
    Baran S, Bałanda L, Gondek Ł, Hoserd A, Nenkov K, Penca B, Szytuła A (2010) Nature of magnetic phase transitions in TbCu2X2 (X = Si, Ge) and HoCu2Si2 compounds. J Alloys Comp. 507:16–20CrossRefGoogle Scholar
  9. 9.
    Cabrera-Pasca GA, Carbonari AW, Saxena RN, Bosch-Santos B, Coaquira JAH, Filho JA (2012) Magnetic hyperfine field at highly diluted Ce impurities in the antiferromagnetic compound GdRh2Si2 studied by perturbed gamma–gamma angular correlation spectroscopy. J Alloys Comp 515:44–48CrossRefGoogle Scholar
  10. 10.
    Huhnt C, Michels G, Roepke M, Schlabitz W, Wurth A, Johrendt D, Mewis A (1997) First-order phase transitions in the ThCr2Si2-type phosphides ARh2P2 (A = Sr, Eu). Phys B 240:26–37CrossRefGoogle Scholar
  11. 11.
    Huhnt C, Schlabitz W, Wurth A, Mewis A, Reehuis M (1998) First- and second-order phase transitions in ternary europium phosphides with ThCr2Si2-type structure. Phys B 252:44–54CrossRefGoogle Scholar
  12. 12.
    Jesche A, Caroca-Canales N, Rosner H, Borrmann H, Ormeci A, Kasinathan D (2008) Strong coupling between magnetic and structural order parameters in SrFe2As2. Phys Rev B 78:180504-4CrossRefGoogle Scholar
  13. 13.
    Sefat AS, Singh DJ, Jin R, McGuire MA, Sales BC, Mandrus D (2009) Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point. Phys Rev B 79:024512-5CrossRefGoogle Scholar
  14. 14.
    Subedi A, Singh DJ (2008) Density functional study of BaNi2As2: electronic structure, phonons, and electron-phonon superconductivity. Phys Rev B 78:132511-4Google Scholar
  15. 15.
    Torikachvili MS, Bud’ko SL, Ni N, Canfield PC (2008) Pressure Induced Superconductivity in CaFe2As2. Phys Rev Lett 101:057006-4CrossRefGoogle Scholar
  16. 16.
    Alireza PL, Ko YTC, Gillett J, Petrone CM, Cole JM, Lonzarich GG, Sebastian SE (2009) Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J Phys 21:012208–012212Google Scholar
  17. 17.
    Rotter M, Tegel M, Johrendt D (2008) Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys Rev Lett 101:107006-4CrossRefGoogle Scholar
  18. 18.
    Sasmal K, Lv B, Lorenz B, Guloy A, Chen F, Xue Y, Chu CW (2008) Superconducting Fe-based compounds (A1−xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys Rev Lett 101:107007-4CrossRefGoogle Scholar
  19. 19.
    Jeevan HS, Hossain Z, Geibel C, Gegenwart P (2008) High-temperature superconductivity in Eu0.5K0.5Fe2As2. Phys Rev B 78:092406–092409CrossRefGoogle Scholar
  20. 20.
    Pfisterer M, Nagorsen G (1980) On the structure of ternary Arsenides. Z Naturforsch B 35B:703–704Google Scholar
  21. 21.
    Singh DJ (2009) Electronic structure of BaCu2As2 and SrCu2As2: sp-band metals. Phys Rev B 79:153102–153104CrossRefGoogle Scholar
  22. 22.
    Anand VK, Kanchana Perera P, Pandey A, Goetsch RJ, Kreyssig A, Johnston DC (2012) Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2. Phys Rev B 85:214523–214549CrossRefGoogle Scholar
  23. 23.
    Lv ZL, Cheng Y, Chen XR, Ji GF (2013) Electronic, elastic and thermal properties of SrCu2As2 via first principles calculation. J Alloys Compd 570:156–161CrossRefGoogle Scholar
  24. 24.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Harsnip PJ, Clark SJ, Panye MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744CrossRefGoogle Scholar
  25. 25.
    Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116-6Google Scholar
  26. 26.
    Gao S (2003) Linear-scaling parallelization of the WIEN package with MPI. Comput Phys Commun 153:190–198CrossRefGoogle Scholar
  27. 27.
    Schwarz K (2003) DFT calculations of solids with LAPW and WIEN2k. J Solid State Chem 176:319–328CrossRefGoogle Scholar
  28. 28.
    Grotendorst J, Blügel S, Marx D (2006) Computational nanoscience. NIC Series, Jülich, 31:85–129, ISBN 3-00-017350-1Google Scholar
  29. 29.
    Blaha P, Schwarz K, Madson GKH, Kvasnicka D, Luitz J (2001) WIEN2K, techn. Universitat, Vienna, ISBN 3-9501031-1-1-2Google Scholar
  30. 30.
    Engel E, Vosko SH (1993) Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys Rev B 47:13164–13174CrossRefGoogle Scholar
  31. 31.
    Charifi Z, Baaziz H, Reshak AH (2007) Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Phys Stat Sol B 244:3154–3167CrossRefGoogle Scholar
  32. 32.
    Reshak AH, Khan SA (2013) Electronic structure and optical properties of In2X2O7 (X = Si, Ge, Sn) from direct to indirect gap: an ab initio study. Comput Mater Sci 78:91–97CrossRefGoogle Scholar
  33. 33.
    Reshak AH, Kamarudin H (2011) Theoretical investigation for Li2CuSb as multifunctional materials: electrode for high capacity rechargeable batteries and novel materials for second harmonic generation. J Alloys Compds 509:7861–7869CrossRefGoogle Scholar
  34. 34.
    Reshak AH, Khan SA (2014) Thermoelectric properties, electronic structure and optoelectronic properties of anisotropic Ba2Tl2CuO6 single crystal from DFT approach. J Magn Magn Mater 354:216–221Google Scholar
  35. 35.
    Reshak AH, Azam S (2013) First-principles study of the electronic structure, charge density, Fermi surface and optical properties of zintl phases compounds Sr2ZnA2 (A = P, As and Sb). J Magn Magn Mater 345:294–303Google Scholar
  36. 36.
    Reshak AH, Azam S (2014) Electronic structure, Fermi surface and optical properties of metallic compound Be8(B48)B2. J Magn Magn Mater 351:98–103Google Scholar
  37. 37.
    Delin A, Ravindran P, Eriksson O, Wills JM (1998) Full-potential optical calculations of lead chalcogenides. Int J Quant Chem 69:349–358CrossRefGoogle Scholar
  38. 38.
    Wooten F (1972) Optical properties of solids. Academic press, New YorkGoogle Scholar
  39. 39.
    Reshak AH, Azam S (2013) Electronic band structure and specific features of Sm2NiMnO6 compound: DFT calculation. J Magn Magn Mater 342:80–86Google Scholar
  40. 40.
    Reshak AH, Charifi Z, Baaziz H (2010) Ab-initio calculation of structural, electronic, and optical characterizations of the intermetallic trialuminides ScAl3 compound. J Solid State Chem 183:1290–1296CrossRefGoogle Scholar
  41. 41.
    Tributsch H (1972) Solar energy-assisted electrochemical splitting of water. Z Naturforsch 32A:972–985Google Scholar
  42. 42.
    Marton L (1956) Experiments on low-energy electron scattering and energy losses. Rev Mod Phys 28:172–184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saleem Ayaz Khan
    • 1
  • A. H. Reshak
    • 1
    • 2
  • Z. A. Alahmed
    • 3
  1. 1.New Technologies - Research CenterUniversity of West BohemiaPilsenCzech Republic
  2. 2.Center of Excellence Geopolymer and Green Technology, School of Material EngineeringUniversity Malaysia PerlisKangarMalaysia
  3. 3.Department of Physics and AstronomyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations