Journal of Materials Science

, Volume 49, Issue 14, pp 5076–5086 | Cite as

Determination of thermodynamic interactions of poly(l-lactide) and biphasic calcium phosphate/poly(l-lactide) composite by inverse gas chromatography at infinite dilution

  • Aleksandra B. Nastasović
  • Nenad L. Ignjatović
  • Dragan P. Uskoković
  • Dana D. Marković
  • Bojana M. Ekmeščić
  • Danijela D. Maksin
  • Antonije E. Onjia


Inverse gas chromatography at infinite dilution was applied to determine the thermodynamic interactions of poly(l-lactide) (PLLA) and the composite of biphasic calcium phosphate and PLLA (BCP/PLLA). The specific retention volumes, \( V_{\text{g}}^{0} \), of 11 organic compounds of different chemical nature and polarity (non-polar, donor or acceptor) were determined in the temperature range of 308–378 K for PLLA and 308–398 K for BCP/PLLA. The weight fraction activity coefficients of test sorbates, \( \Omega_{1}^{\infty } \), and the Flory–Huggins interaction parameters, \( \chi_{12}^{\infty } \), were estimated and discussed in terms of interactions of the sorbates with PLLA and BCP/PLLA. Also, the partial molar free energy, \( \Delta G_{1}^{\infty } \), the partial molar heat of mixing, \( \Delta H_{1}^{\infty } \), the sorption molar free energy, \( \Delta G_{1}^{\text{S}} \), the sorption enthalpy, \( \Delta H_{1}^{\text{S}} \), and the sorption entropy, \( \Delta S_{1}^{\text{S}} \), were analyzed. A different chromatographic behavior of the two investigated samples, PLLA and BCP/PLLA, was observed. The values of \( \Omega_{1}^{\infty } \) indicated n-alkanes, diethyl ether, tetrahydrofurane (THF), cyclohexane, benzene, dioxane (except for 338 K), and ethyl acetate (EtAc) (except for 338 K) as non-solvents, and chloroform (CHCl3) as good solvent (except for 378 K) for PLLA. For BCP/PLLA, CHCl3, EtAc (for 378 K), dioxane (except for 378 K), and THF were indicated as good solvents.


PLLA Sorbate Biphasic Calcium Phosphate Molar Free Energy Specific Retention Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Serbian Ministry of Education, Science and Technological Development through the projects III43009 and III45004. The authors thank Novartis Pharma AG (Basel, Switzerland) for their donation of the HP5890II gas chromatograph used in this work.


  1. 1.
    Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60:38–45CrossRefGoogle Scholar
  2. 2.
    Zhou H, Lawrence JG, Bhaduri SB (2012) Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater 8:1999–2016CrossRefGoogle Scholar
  3. 3.
    Ignjatović N, Plavšić M, Miljković M, Živković LJ, Uskoković D (1999) Microstructural characteristic of Ca-hydroxyapatite/poly-l-lactide based composites. J Microsc 196:243–248CrossRefGoogle Scholar
  4. 4.
    Nazhat SN, Kellomäki M, Törmälä P, Tanner KE, Bonfield W (2001) Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J Biomed Mater Res 58:335–343CrossRefGoogle Scholar
  5. 5.
    Roeder RK, Sproul MM, Turner CH (2003) Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J Biomed Mater Res A 67:801–812CrossRefGoogle Scholar
  6. 6.
    Ignjatović N, Tomić S, Dakić M, Miljković M, Plavšić M, Uskoković D (1999) Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials 20:809–816CrossRefGoogle Scholar
  7. 7.
    Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuno M, Nakamura T (2000) Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (l-lactide) composite rods for internal fixation of bone fractures. Biomaterials 21:889–898CrossRefGoogle Scholar
  8. 8.
    Ajduković Z, Najman S, Đorđević LJ, Savić V, Mihailović D, Petrović D, Ignjatović N, Uskoković D (2005) Repair of bone tissue affected by osteoporosis with hydroxyapatite/poly-l-lactide (HAp-PLLA) with and without blood plasma. J Biomater Appl 20:179–190CrossRefGoogle Scholar
  9. 9.
    Dorozhkin SV (2009) Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 44:2343–2387CrossRefGoogle Scholar
  10. 10.
    Uskoković V, Uskoković D (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res Part B 96B(152):152–191CrossRefGoogle Scholar
  11. 11.
    Russias J, Saiz E, Nalla RK, Tomsia AP (2006) Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J Mater Sci 41:5127–5133. doi: 10.1016/j.actbio.2008.04.006 CrossRefGoogle Scholar
  12. 12.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346CrossRefGoogle Scholar
  13. 13.
    Ignjatović NL, Liu CZ, Czernuszka JT, Uskoković DP (2007) Micro and nano/injectable composite biomaterials of calcium phosphate coated with poly(dl-lactide-co-glycolide). Acta Biomater 3:927–935CrossRefGoogle Scholar
  14. 14.
    Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-l-lactide (PLLA): part I basic characteristics. Biomaterials 20:859–877CrossRefGoogle Scholar
  15. 15.
    Surrao DC, Waldman SD, Amsden BG (2012) Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomater 8:3997–4006CrossRefGoogle Scholar
  16. 16.
    Jung MR, Shim IK, Kim ES, Park YJ, Yang YI, Lee SK, Lee SJ (2011) Controlled release of cell-permeable gene complex from poly(l-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release 152:294–302CrossRefGoogle Scholar
  17. 17.
    Verheyen C, Klein C, de Blieckhogervorst J, Wolke J, van Blitterswijn C, de Groot K (1993) Evaluation of hydroxyapatite/poly(l-lactide) composites: physicochemical properties. J Mater Sci Mater Med 4:58–65CrossRefGoogle Scholar
  18. 18.
    Fabbri M, Celotti G, Ravaglioli (1995) A hydroxyapatite-based aggregates: physico-chemical nature, structure, texture and architecture. Biomaterials 16:225–228CrossRefGoogle Scholar
  19. 19.
    Ignjatović N, Suljovrujić E, Budinski-Simendić J, Krakovsky I, Uskoković D (2004) Evaluation of hot-pressed hydroxyapatite/poly-l-lactide composite biomaterial characteristics. J Biomed Mater Res Part B 71B:284–294CrossRefGoogle Scholar
  20. 20.
    Ignjatović N, Ninkov P, Ajduković Z, Vasiljević-Radović D, Uskoković D (2007) biphasic calcium phosphate/poly-d,l-lactide-co-glycolide composite biomaterial as bone substitute. J Eur Ceram Soc 27:1589–1594CrossRefGoogle Scholar
  21. 21.
    Lloyd DR, Ward TC, Schreiber HP (1989) Inverse gas chromatography. Characterization of Polymers and other materials. ACS Symposium Series, 391 Washington, DCGoogle Scholar
  22. 22.
    Conder JR, Young CL (1979) Physicochemical measurements in gas chromatography. Wiley, New YorkGoogle Scholar
  23. 23.
    Kaya I, Ilter Z, Senol D (2002) Thermodynamic interactions and characterisation of poly[(glycidyl methacrylate-co-methyl, ethyl, butyl) methacrylate] by inverse gas chromatography. Polymer 43:6455–6463CrossRefGoogle Scholar
  24. 24.
    Reid RC, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. Mc Graw-Hill, New YorkGoogle Scholar
  25. 25.
    DiPaola-Baranyi G, Guillet JE (1978) Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11:228–235CrossRefGoogle Scholar
  26. 26.
    Voelkel A, Strzemiecka B, Adamska K, Milczewska K (2009) Inverse gas chromatography as a source of physiochemical data. J Chromatogr A 1216:1551–1566CrossRefGoogle Scholar
  27. 27.
    Zhao L, Choi P (2001) Determination of solvent-independent polymer–polymer interaction parameter by an improved inverse gas chromatographic approach. Polymer 42:1075–1081CrossRefGoogle Scholar
  28. 28.
    Huang JC (2006) Anomalous solubility parameter and probe dependency of polymer–polymer interaction parameter in inverse gas chromatography. Eur Polym J 42:1000–1007CrossRefGoogle Scholar
  29. 29.
    Panayiotou C (2013) Polymer–polymer miscibility and partial solvation parameters. Polymer 54:1621–1638CrossRefGoogle Scholar
  30. 30.
    Héberger K, Milczewska K, Voelkel A (2005) Principal component analysis of polymer–solvent and filler–solvent interactions by inverse gas chromatography. Colloids Surf A 260:29–37CrossRefGoogle Scholar
  31. 31.
    Hamieh T, Fadlallah MB, Schultz J (2002) New approach to characterize physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution: III. Determination of the acid–base properties of some solid substrates (polymers, oxides and carbon fibres): a new model. J Chromatogr A 969:37–47CrossRefGoogle Scholar
  32. 32.
    Nastasović AB, Onjia A, Milonjić SK, Jovanović SM (2005) Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography. Eur Polym J 41:1234–1242CrossRefGoogle Scholar
  33. 33.
    Cava D, Gavara R, Lagarón JM, Voelkel A (2007) Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. J Chromatogr A 1148:86–91CrossRefGoogle Scholar
  34. 34.
    Hamieh T, Schultz J (2002) New approach to characterize physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution: II. Study of the transition temperatures of poly(methyl methacrylate) at various tacticities and of poly(methyl methacrylate) adsorbed on alumina and silica. J Chromatogr A 969:27–36CrossRefGoogle Scholar
  35. 35.
    Nastasović AB, Onjia AE, Milonjić SK, Jovanović SM (2005) Determination of thermodynamic properties of macroporous glycidyl methacrylate-based copolymers by inverse gas chromatography under finite surface coverage. J Polym Sci Part B 43:2524–2533CrossRefGoogle Scholar
  36. 36.
    Benabdelghani Z, Etxeberria A, Djadoun S, Iruin JJ, Uriarte C (2006) The phase behaviour of poly(styrene-co-methacrylic acid)/poly(2,6-dimethyl-1,4-phenylene oxide) by inverse gas chromatography. J Chromatogr A 1127:237–245CrossRefGoogle Scholar
  37. 37.
    Nastasović AB, Onjia A (2008) Determination of glass temperature of polymers by inverse gas chromatography (review). J Chromatogr A 1195:1–15CrossRefGoogle Scholar
  38. 38.
    Zhong B, Al-Saigh ZY (2012) Characterization of biodegradable polymers by inverse gas chromatography. III. Blends of amylopectin and poly(l-lactide). J Appl Polym Sci 123:2616–2627CrossRefGoogle Scholar
  39. 39.
    Eser H, Tihminlioglu F (2006) Determination of thermodynamic and transport properties of solvents and non solvents in poly(l-lactide-co-glycolide). J Appl Polym Sci 102:2426–2432CrossRefGoogle Scholar
  40. 40.
    Al-Saigh ZY (1999) Inverse gas chromatographic characterization of poly(ethylene oxide). Polymer 40:3479–3485CrossRefGoogle Scholar
  41. 41.
    Miličević D, Trifunović S, Dojčilović J, Ignjatović N, Suljovrujić E (2010) The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite. Nucl Instrum Methods Phys Res Sect B 268:2744–2749CrossRefGoogle Scholar
  42. 42.
    Fox TG, Flory PJ (1948) Viscosity-molecular weight and viscosity-temperature relationships for polystyrene and polyisobutylene. J Am Chem Soc 70:2384–2395CrossRefGoogle Scholar
  43. 43.
    Qian R, Wu L, Shen D, Napper DH, Mann RA, Sangster DF (1993) Single-chain polystyrene glasses. Macromolecules 26:2950–2953CrossRefGoogle Scholar
  44. 44.
    Liao K, Quan D, Lu Z (2002) Effects of physical aging on glass transition behavior of poly(dl-lactide). Eur Polym J 38:157–162CrossRefGoogle Scholar
  45. 45.
    Lavoie A, Guillet JE (1969) Estimation of glass transition on temperatures from gas chromatographic studies on polymers. Macromolecules 2:443–446CrossRefGoogle Scholar
  46. 46.
    Davis PK, Danner RP, Duda JL, Romdhane IH (2004) Use of inverse gas chromatography to study binary polymer–solvent systems near the glass transition temperature. Macromolecules 37:9201–9210CrossRefGoogle Scholar
  47. 47.
    Ignjatović N, Nastasović A, Laninović V, Onjia A, Miljković M (2004) Preparation and properties of polymeric and composite bioresorbable barrier membranes. Mater Sci Forum 453–454:537–542CrossRefGoogle Scholar
  48. 48.
    Milczewska K, Voelkel A (2002) Characterization of the interactions in polymer-filler systems by inverse gas chromatography. J Chromatogr A 969:255–259CrossRefGoogle Scholar
  49. 49.
    Guillet JE, Purnell JH (1973) Advances in analytical chemistry and instrumentation gas chromatography. Wiley, New YorkGoogle Scholar
  50. 50.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  51. 51.
    Santos JMRCA, Guthrie JT (2005) Analysis of interactions in multicomponent polymeric systems: The key-role of inverse gas chromatography. Mater Sci Eng R 50:79–107CrossRefGoogle Scholar
  52. 52.
    Liu Y, Shi B (2008) Determination of Flory interaction parameters between polyimide and organic solvents by HSP theory and IGC. Polym Bull 61:501–509CrossRefGoogle Scholar
  53. 53.
    Voelkel A (2012) Physicochemical measurements (inverse gas chromatography). In: Poole CF (ed) Gas chromatography. Elsevier, Amsterdam, pp 477–494CrossRefGoogle Scholar
  54. 54.
    Barton AFM (1991) CRC handbook of solubility parameter and other cohesion parameters. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Blanks RF, Prausnitz JM (1964) Thermodynamics of polymer solubility in polar and nonpolar systems. Ind Eng Chem Fundam 3:1–8CrossRefGoogle Scholar
  56. 56.
    Klein J, Jeberien HE (1980) Chainlength dependence of thermodynamic properties of poly(ethylene glycol). Macromol Chem 181:1237–1249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aleksandra B. Nastasović
    • 1
  • Nenad L. Ignjatović
    • 2
  • Dragan P. Uskoković
    • 2
  • Dana D. Marković
    • 3
  • Bojana M. Ekmeščić
    • 1
  • Danijela D. Maksin
    • 3
  • Antonije E. Onjia
    • 3
  1. 1.University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Department of ChemistryBelgradeRepublic of Serbia
  2. 2.Centre for Fine Particles Processing and NanotechnologiesInstitute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeRepublic of Serbia
  3. 3.University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Chemical Dynamics and Permanent EducationBelgradeRepublic of Serbia

Personalised recommendations