Advertisement

Journal of Materials Science

, Volume 49, Issue 14, pp 4905–4918 | Cite as

Influence of high aluminium content on the mechanical properties of directionally solidified multicrystalline silicon

  • T. OrellanaEmail author
  • E. M. Tejado
  • C. Funke
  • S. Riepe
  • J. Y. Pastor
  • H. J. Möller
Article

Abstract

The purpose of this research is the mechanical characterisation of multicrystalline silicon crystallised from silicon feedstock with a high content of aluminium for photovoltaic applications. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within the multicrystalline silicon block to quantify the impact of the segregation of impurities on these mechanical properties. Aluminium segregated to the top of the block and caused extensive micro-cracking of the silicon matrix due to the thermal mismatch between silicon and the aluminium inclusions. Silicon nitride inclusions reduced the fracture toughness and caused failure by radial cracking in its surroundings due to its thermal mismatch with silicon. However, silicon carbide increased the fracture toughness and elastic modulus of silicon.

Keywords

Fracture Toughness Stress Intensity Factor Silicon Nitride Weibull Modulus Residual Thermal Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to deeply thank M. Kwiatkowska, F. Boldt, F. Haas, P. Häuber, M. Schumann, J. Zielonka and M. Winterhalder from Fraunhofer ISE and W. Fütterer from the TU Bergakademie for their valuable work that made this research possible. This work was supported by the Fraunhofer Society with the project Si-Beacon, the Ministerio de Economía y Competitividad, MAT2009-13979-C03, and the Comunidad de Madrid, S-S2009/MAT-1585-ESTRUMAT2.

References

  1. 1.
    Schmich E, Schillinger N, Reber S (2007) Silicon CVD deposition for low-cost applications in photovoltaics. Surf Coat Technol 201:9325–9329CrossRefGoogle Scholar
  2. 2.
    Orellana Pérez T, Funke C, Fütterer W, Riepe S, Möller HJ, Tejado Garrido EM, Pastor JY (2011) In: “Impact of Impurities on the Mechanical Strength of Multicrystalline Silicon, 26th EU PVSEC, p 1864–1870Google Scholar
  3. 3.
    Green DJ, (1998) An introduction to the mechanical properties of ceramics, Cambridge University Press, Cambridge, p 1–136Google Scholar
  4. 4.
    Riepe S, Schumann M, Schmich E, Janz S, Eyer A, Reber S, Bett AW, Weber ER (2008) Silicon Material And Technology Evaluation Center (SIMTEC) at Fraunhofer ISE—Achievements and Visions, 23rd EU PVSEC, p 1264–1269Google Scholar
  5. 5.
    Funke C, Wolf S, Stoyan D (2009) Modelling the tensile strength and crack length of wire-sawn silicon wafers. J Sol Energy Eng 131Google Scholar
  6. 6.
    ASTM C1499-08 (2008) Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM, New YorkGoogle Scholar
  7. 7.
    ASTM C 1161-02 (2003) Standard test method for flexural strength of advanced ceramics at ambient temperature, ASTM, New YorkGoogle Scholar
  8. 8.
    ASTM C 1239-07 (2007) Standard practice for reporting uniaxial strength data and estimating weibull distribution parameters for advanced ceramics, ASTM, New YorkGoogle Scholar
  9. 9.
    Guinea GV, Pastor JY, Planas J, Elices M (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fract 89:103–116CrossRefGoogle Scholar
  10. 10.
    ASTM E 1876-09 (2009) Standard test method for dynamic young′s modulus, shear modulus, and poisson′s ratio by impulse excitation of vibration, ASTM, New YorkGoogle Scholar
  11. 11.
    Spinner S, Reichard TW, Tefft WE (1960) A comparison of experimental and theoretical relations between young′s modulus and the flexural and longitudinal resonance frequencies of uniform bars. J Res Bur Stand 64:147–155CrossRefGoogle Scholar
  12. 12.
    Wachtman JB, Roger Cannon W, Matthewson MJ (2009) In: Mechanical properties of ceramics, 2nd edn., Wiley, New JeresyGoogle Scholar
  13. 13.
    Selsing J (1961) Internal stresses in ceramics. J Am Ceram Soc 44:419CrossRefGoogle Scholar
  14. 14.
    Weyl D (1959) Über den Einfluß innerer Spannungen auf das Gefüge und die mechanische Festigkeit des Porzellans. Ber Dtsch Keram Ges 36:319–324Google Scholar
  15. 15.
    Hull R (1999) Properties of crystalline silicon. IET, LondonGoogle Scholar
  16. 16.
    Davidge RW, Green TJ (1968) The strength of two phase ceramic/glass materials. J Mater Sci 3:629–634. doi:  10.1007/BF00757910 CrossRefGoogle Scholar
  17. 17.
    Ito YM, Rosenblatt M, Cheng LY, Lange FF, Evans AG (1981) Cracking in particulate composites due to Thermal mechanical stress. Int J Fract 17:483–491Google Scholar
  18. 18.
    Evans AG (1974) The role of inclusions in the fracture of ceramic materials. J Mater Sci 9:1145–1152. doi:  10.1007/BF00552831 CrossRefGoogle Scholar
  19. 19.
    Green DJ (1981) Stress-induced microcracking at second-phase inclusions. J Am Ceram Soc 64:138–141CrossRefGoogle Scholar
  20. 20.
    Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55:39–44Google Scholar
  21. 21.
    Khaund AK, Krstic VD, Nicholson PS (1977) Influence of elastic and thermal mismatch on the local crack-driving force in brittle composites. J Mater Sci 12:2269–2273. doi:  10.1007/BF00552248 CrossRefGoogle Scholar
  22. 22.
    Li R, Chudnovsky A (1993) Variation of the energy release rate as a crack approches and passes through an elastic inclusion. Int J Fract 59:R69–R74Google Scholar
  23. 23.
    Wei GC, Becher PF (1984) Improvements in mechanical properties in SiC by the addition of TiC inclusions. J Am Ceram Soc 67:571–574CrossRefGoogle Scholar
  24. 24.
    Rose LRF (1986) Effective fracture toughness of microcracked materials. J Am Ceram Soc 69:212–214CrossRefGoogle Scholar
  25. 25.
    Hall JJ (1967) electronic effects in the elastic constants of n-type silicon. Phys Rev 161:756–761CrossRefGoogle Scholar
  26. 26.
    Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solid 11:127–140CrossRefGoogle Scholar
  27. 27.
    Budiansky B, O’Connoell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97CrossRefGoogle Scholar
  28. 28.
    Okada Y, Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Appl Phys 56:314–320CrossRefGoogle Scholar
  29. 29.
    Li Z, Bradt RC (1986) Thermal expansion of the cubic (3C) polytype of SiC. J Mater Sci 21:4366–4368CrossRefGoogle Scholar
  30. 30.
    Iwai S, Yasunaga A (1959) Über die Thermische Ausdehnung des Si3N4. Die Naturwissenschaften 46:473–474CrossRefGoogle Scholar
  31. 31.
    Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) The poisson′s ratio of engineering ceramics at elevated temperature. J Mater Sci Lett 10:282–284CrossRefGoogle Scholar
  32. 32.
    Ashby MF (2004) Materials selection in mechanical design, 3rd edn. Butterworth HeinemannGoogle Scholar
  33. 33.
    Sinclair JE, Lawn BR (1972) An atomistic study of cracks in diamond-structure crystals. Proc Math Phys Eng Sci 329:83–103CrossRefGoogle Scholar
  34. 34.
    Schönfelder S, Sampson A, Ganapati V, Koepge R, Bagdahn J, Buonassisi T (2009) Quantitative stress measurements of bulk microdefects in multicrystalline silicon, 24th EUPVSEC, p 977–980Google Scholar
  35. 35.
    M′Hamdi M, Gouttebroze S (2009) Analysis of the residual stress field associated with particles in multi-crystalline silicon, 24th EUPVSEC p 1265–1268Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. Orellana
    • 1
    • 2
    Email author
  • E. M. Tejado
    • 3
  • C. Funke
    • 2
  • S. Riepe
    • 1
  • J. Y. Pastor
    • 3
  • H. J. Möller
    • 1
    • 2
  1. 1.Fraunhofer Institute for Solar Energy SystemsFreiburgGermany
  2. 2.Institute for Experimental Physics, TU Bergakademie FreibergFreibergGermany
  3. 3.Departameto de Ciencia de Materiales-CISDEME.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid-CSICMadridSpain

Personalised recommendations