Journal of Materials Science

, Volume 49, Issue 14, pp 4899–4904 | Cite as

Patterning SiC nanoprecipitate in Si single crystals by simultaneous dual- beam ion implantation

  • Gihan Velişa
  • Patrick Trocellier
  • Lionel Thomé
  • Sylvain Vaubaillon
  • Gaël Sattonnay
  • Sandrine Miro
  • Yves Serruys


β–SiC nanoprecipitates can be patterned in crystalline silicon with an almost monomodal size distribution by simultaneous-dual-beam of C+ and Si+ ion implantations at 550 °C. Their shape appears as spherical (average diameter ~4–5 nm) ,and they are in epitaxial relationship with the crystalline silicon matrix. The narrow size distribution follows the left wing of the carbon distribution where the nuclear ion stopping, and thus the point defect generation rate is largest. This observation allows us to conclude that the induced damage act as sinks for C atoms leading to the SiC nanoprecipitates formation centered at the maximum of the simulated damage distribution. The nuclear reaction analysis, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy techniques were used to characterize the samples.


HRTEM Carbon Depth Nuclear Reaction Analysis HRTEM Observation Implantation Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Experiments were carried out at JANNuS (Joint Accelerators for Nanoscience and Nuclear Simulation), Saclay, France, and supported by the French Network EMIR and “Programme Transverse Matériaux Avancés,” CEA-SACLAY-FRANCE. One of the authors (G. Velişa) is gratefully indebted to Estelle Meslin and Pierre-Eugene Coulon without whom the pioneer TEM and HRTEM measurements from this work could not have been achieved.


  1. 1.
    Weber WJ, Yu N, Wang LM (1998) Irradiation-induced amorphization in β-SiC. J Nucl Mater 253:53–59CrossRefGoogle Scholar
  2. 2.
    Debelle A, Thomé L, Dompoint D, Boulle A, Garrido F, Jagielski J, Chaussende D (2010) Characterization and modelling of the ion-irradiation induced disorder in 6H–SiC and 3C–SiC single crystals. J Phys D Appl Phys 43:455408CrossRefGoogle Scholar
  3. 3.
    Thomé L, Moll S, Debelle A, Garrido F, Sattonnay G, Jagielski J (2012) Use of channeling for the study of radiation effects in nuclear materials. Nucl Instrum Methods Phys Res B 290:6–12CrossRefGoogle Scholar
  4. 4.
    Benyagoub A, Audren A, Thomé L, Garrido F (2006) A thermal crystallization induced by electronic excitations in ion-irradiated silicon carbide. Appl Phys Lett 89:241914CrossRefGoogle Scholar
  5. 5.
    Serre C, Pérez-Rodríguez A, Romano-Rodríguez A, Morante JR, Kögler R, Skorupa W (1995) Spectroscopic characterization of phases formed by high-dose carbon ion implantation in silicon. J Appl Phys 77:2978CrossRefGoogle Scholar
  6. 6.
    Lindner JKN, Stritzker B (1999) Controlling the density distribution of SiC nanocrystals for the ion beam synthesis of buried SiC layers in silicon. Nucl Instrum Methods Phys Res B 147:249–255CrossRefGoogle Scholar
  7. 7.
    Eichhorn F, Schell N, Mücklich A, Metzger H, Matz W, Kőgler R (2002) Structural relation between Si and SiC formed by carbon ion implantation. J Appl Phys 91:1287CrossRefGoogle Scholar
  8. 8.
    Lindner JKN, Häberlen M, Thorwarth G, Stritzker B (2006) On the balance between ion beam induced nanoparticle formation and displacive precipitate resolution in the C-Si system. Mat Sci Eng C 26:857–861CrossRefGoogle Scholar
  9. 9.
    Kőgler R, Eichhorn F, Kaschny JR, Mücklich A, Reuther H, Heera V, Skorupa W, Serre C, Perez-Rodriguez A (2003) Synthesis of nano-sized SiC precipitates in Si by simultaneous dual-beam implantation of C+ and Si+ ions. Appl Phys A 76:827–835CrossRefGoogle Scholar
  10. 10.
    Serruys Y, Trocellier P, Miro S, Bordas É, Ruault MO, Kaïtasov O, Henry S, Leseigneur P, Bonnaillie Th, Pellegrino S, Vaubaillon S, Uriot D (2009) JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J Nucl Mater 386:967–970CrossRefGoogle Scholar
  11. 11.
    Pellegrino S, Trocellier P, Miro S, Serruys Y, Bordas É, Martin H, Chaâbane N, Vaubaillon S, Gallien JP, Beck L (2012) The JANNUS Saclay facility: a new platform for materials irradiation, implantation and ion beam analysis. Nucl Instrum Methods Phys Res B 273:213–217CrossRefGoogle Scholar
  12. 12.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York. SRIM program can be downloaded at
  13. 13.
    Holström E, Kuronen A, Nordlund K (2008) Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys Rev B 78:045202CrossRefGoogle Scholar
  14. 14.
    Velisa G, Trocellier P, Vaubaillon S, Miro S, Serruys Y, Bordas É, Meslin E, Mylonas S, Coulon PE, Leprêtre F, Pilz A, Thomé L (2013) Tailoring of SiC nanoprecipitates formed in Si. Nucl Instrum Methods B 307(165):170Google Scholar
  15. 15.
    Trouslard P (1995), Report CEA-R-5703Google Scholar
  16. 16.
    Mayer M (1997–1998) SIMNRA Version 6.0, Max-Planck-Institüt für Plasmaphysik, GarchingGoogle Scholar
  17. 17.
    Anderson R, Klepeis S, Benedict J, Vandygrift WG, Orndorff (1989), in: Cullis AG, Hutchinson JL (Eds.), Microscopy of Semiconducting Materials, Proceedings of the Royal Microscopical Society Conference, IOP Publishing LTD, Bristol, p 491Google Scholar
  18. 18.
    Moll S, Zhang Y, Zhu Z, Edmondson PD, Namavar F, Weber WJ (2013) Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria. Nucl Instrum Methods Phys Res B 307:93–97CrossRefGoogle Scholar
  19. 19.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  20. 20.
    Poudel PR, Rout B, Diercks DR, Strzhemechny YM, Mcdaniel FD (2011) Fluence dependant formation of β-SiC by ion implantation and thermal annealing. Appl Phys A 104:183–188CrossRefGoogle Scholar
  21. 21.
    Zirkelbach F, Stritzker B, Nordlund K, Lindner JKN, Schmidt WG, Rauls E (2011) Combined ab initio and classical potential simulation study on silicon carbide precipitation in silicon. Phys Rev B 84:064126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gihan Velişa
    • 1
    • 2
  • Patrick Trocellier
    • 1
  • Lionel Thomé
    • 3
  • Sylvain Vaubaillon
    • 4
  • Gaël Sattonnay
    • 5
  • Sandrine Miro
    • 1
  • Yves Serruys
    • 1
  1. 1.CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUSGif-sur-YvetteFrance
  2. 2.Horia Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania
  3. 3.Centre de Sciences Nucléaires et de Sciences de la MatièreCNRS-IN2P3-Université Paris-SudOrsayFrance
  4. 4.CEA, INSTN, UEPTN, Laboratoire JANNUSGif-sur-YvetteFrance
  5. 5.ICMMO-LEMHEUniversité Paris SudOrsayFrance

Personalised recommendations