Journal of Materials Science

, Volume 49, Issue 12, pp 4215–4224 | Cite as

Symmetrically functionalized diketopyrrolopyrrole with alkylated thiophene moiety: from synthesis to electronic devices applications

  • Akshaya K. Palai
  • Jihee Lee
  • Minkyung Jea
  • Hanah Na
  • Tae Joo Shin
  • Soonmin Jang
  • Seung-Un Park
  • Seungmoon Pyo


A symmetrically conjugated molecular semiconductor derived from diketopyrrolopyrrole (DPP), i.e., 2,5-dihexadecyl-3,6-bis(5-(3-hexylthiophen-2-yl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione [DPP(3HT) 2 ], has been synthesized using the Stille coupling reaction. The optical band gap of DPP(3HT) 2 is found to be 1.65 eV with HOMO energy level of −5.13 eV. DPP(3HT) 2 is thermally stable up to 348 °C exhibiting only 5 % weight loss. X-ray diffraction analysis revealed the DPP(3HT) 2 to be polycrystalline with a high degree of crystallinity. It showed highly narrow and strong diffraction peaks with a d-spacing of ca. 30.18 Å (at 2θ = 2.09°, full width at half maximum: 2θ = 0.126°) indicating an end-to-end packing distance with the long alkyl chains (along the a-axis) being slightly tilted and partially interdigitated for effective packing. Field-effect transistors and complementary inverters employing DPP(3HT) 2 as a p-channel semiconductor have been fabricated and characterized.

Graphical Abstract


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Gate Dielectric High Occupied Molecular Orbital Energy Level Onset Oxidation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Foundation (NRF) funded by Korea government (MEST) (R11-2008-052-03,003, 2012R1A2A2A01045694). A.K.P. acknowledges financial support from the 2012 KU Brain Pool Program of Konkuk University.

Supplementary material

10853_2014_8116_MOESM1_ESM.doc (263 kb)
Supplementary material 1 (DOC 263 kb)


  1. 1.
    Jager CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors: from theory to devices. J Am Chem Soc 135:4893–4900CrossRefGoogle Scholar
  2. 2.
    Tarabella G, Mohammadi FM, Coppede N, Barbero F, Iannotta S, Santato C, Cicoira F (2013) New opportunities for organic electronics and bioelectronics: ions in action. Chem Sci 4:1395–1409CrossRefGoogle Scholar
  3. 3.
    Roelofs WSC, Adriaans WH, Janssen RAJ, Kemerink M, de Leeuw DM (2013) Light emission in the unipolar regime of ambipolar organic field-effect transistors. Adv Funct Mater 23:4133–4139CrossRefGoogle Scholar
  4. 4.
    Magliulo M, Mallardi A, Mulla MY, Cotrone S, Pistillo BR, Favia P, Vikholm-Lundin I, Palazzo G, Torsi L (2013) Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv Mater 25:2090–2094CrossRefGoogle Scholar
  5. 5.
    Kang MS, Frisbie CD (2013) A pedagogical perspective on ambipolar FETs. Chem Phys Chem 14:1547–1552CrossRefGoogle Scholar
  6. 6.
    Mukherjee B, Sim K, Shin TJ, Lee J, Mukherjee M, Ree M, Pyo S (2012) Organic phototransistors based on solution grown, ordered single crystalline arrays of a π-conjugated molecule. J Mater Chem 22:3192–3200CrossRefGoogle Scholar
  7. 7.
    Mas-Torrent M, Rovira C (2011) Role of molecular order and solid-state structure in organic field-effect transistors. Chem Rev 111:4833–4856CrossRefGoogle Scholar
  8. 8.
    Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666CrossRefGoogle Scholar
  9. 9.
    Ko JB, Hong J-H (2010) Electrical property of pentacene organic thin-film transistors with a complementary-gated structure. J Mater Sci 45:2839–2842.doi: 10.1007/s10853-009-4194-0 CrossRefGoogle Scholar
  10. 10.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135:6724–6746CrossRefGoogle Scholar
  11. 11.
    Khim D, Lee W-H, Baeg K-J, Kim D-Y, Kang I-N, Noh Y–Y (2012) Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. J Mat Chem 22:12774–12783CrossRefGoogle Scholar
  12. 12.
    Shahid M, McCarthy-Ward T, Labram J, Rossbauer S, Domingo EB, Watkins SE, Stingelin N, Anthopoulos TD, Heeney M (2012) Low band gap selenophene-diketopyrrolopyrrole polymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chem Sci 3:181–185CrossRefGoogle Scholar
  13. 13.
    Wen Y, Liu Y, Guo Y, Yu G, Hu W (2011) Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem Rev 111:3358–3406CrossRefGoogle Scholar
  14. 14.
    Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24CrossRefGoogle Scholar
  15. 15.
    Ortiz RP, Facchetti A, Marks TJ (2010) High-k organic, inorganic and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110:205–239CrossRefGoogle Scholar
  16. 16.
    Glowatzki H, Sonar P, Singh SP, Mak AM, Sullivan MB, Chen W, Wee ATS, Dodabalapur A (2013) Band gap tunable N-type molecules for organic field effect transistors. J Phys Chem C 117:11530–11539CrossRefGoogle Scholar
  17. 17.
    Li J, Chang J–J, Tan HS, Jiang H, Chen X, Chen Z, Zhang J, Wu J (2012) Disc-like 7,14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. Chem Sci 3:846–850CrossRefGoogle Scholar
  18. 18.
    Ruiz C, Garcia-Frutos EM, Hennrich G, Gomez-Lor B (2012) Organic semiconductors toward electronic devices: high mobility and easy processability. J Phys Chem Lett 3:1428–1436CrossRefGoogle Scholar
  19. 19.
    Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D (2007) An ultra closely π-stacked organic semiconductor for high performance field-effect transistors. Adv Mater 19:2613–2617CrossRefGoogle Scholar
  20. 20.
    Liscio F, Albonetti C, Broch K, Shehu A, Quiroga SD, Ferlauto L, Frank C, Kowarik S, Nervo R, Gerlach A, Milita S, Schreiber F, Biscarini F (2013) Molecular reorganization in organic field-effect transistors and its effect on two-dimensional charge transport pathways. ACS Nano 7:1257–1264CrossRefGoogle Scholar
  21. 21.
    Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323CrossRefGoogle Scholar
  22. 22.
    Holcombe TW, Yum J-H, Yoon J, Gao P, Marszalek M, Censo DD, Rakstys K, Nazeeruddin MdK, Graetzela M (2012) A structural study of DPP-based sensitizers for DSC applications. Chem Commun 48:10724–10726CrossRefGoogle Scholar
  23. 23.
    Palai AK, Lee J, Das S, Lee J, Cho H, Park S-U, Pyo S (2012) A diketopyrrolopyrrole containing molecular semiconductor: synthesis, characterization and solution-processed 1D-microwire based electronic devices. Org Electron 13:2553–2560CrossRefGoogle Scholar
  24. 24.
    Burckstummer H, Weissenstein A, Bialas D, Wurthner F (2011) Synthesis and characterization of optical and redox properties of bithiophene-functionalized diketopyrrolopyrrole chromophores. J Org Chem 76:2426–2432CrossRefGoogle Scholar
  25. 25.
    Kim Y, Song CE, Cho A, Kim J, Eom Y, Ahn J, Moon S-J, Lim E (2014) Synthesis of diketopyrrolopyrrole (DPP)-based small molecule donors containing thiophene or furan for photovoltaic applications. Mater Chem Phys 143:825–829CrossRefGoogle Scholar
  26. 26.
    Lee OP, Yiu AT, Beaujuge PM, Woo CH, Holcombe TW, Millstone JE, Douglas JD, Chen MS, Fréchet JMJ (2011) Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv Mater 23:5359–5363CrossRefGoogle Scholar
  27. 27.
    Loser S, Bruns CJ, Miyauchi H, Ortiz RP, Facchetti A, Stupp SI, Marks TJ (2011) A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. J Am Chem Soc 133:8142–8145CrossRefGoogle Scholar
  28. 28.
    Qu S, Wu W, Hua J, Kong C, Long Y, Tian H (2010) New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. J Phys Chem C 114:1343–1349CrossRefGoogle Scholar
  29. 29.
    Matthews JR, Niu W, Tandia A, Wallace AL, Hu J, Lee W-Y, Giri G, Mannsfeld SCB, Xie Y, Cai S, Fong HH, Bao Z, He M (2013) Scalable synthesis of fused thiophene-diketopyrrolopyrrole semiconducting polymers processed from nonchlorinated solvents into high Performance thin film transistors. Chem Mater 25:782–789CrossRefGoogle Scholar
  30. 30.
    Mei J, Graham KR, Stalder R, Tiwari SP, Cheun H, Shim J, Yoshio M, Nuckolls C, Kippelen B, Castellano RK, Reynolds JR (2011) Self-assembled amphiphilic diketopyrrolopyrrole-based oligothiophenes for field-effect transistors and solar cells. Chem Mater 23:2285–2288CrossRefGoogle Scholar
  31. 31.
    Lu C, Chen W-C (2013) Diketopyrrolopyrrole-thiophene-based acceptor-donor-acceptor conjugated materials for high-performance field-effect transistors. Chem Asian J 8:2813–2821CrossRefGoogle Scholar
  32. 32.
    Tantiwiwat M, Tamayo A, Luu N, Dang X-D, Nguyen T-Q (2008) Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: effect of alkyl substituents and thermal annealing. J Phys Chem C 112:17402–17407CrossRefGoogle Scholar
  33. 33.
    Qiao Y, Guo Y, Yu C, Zhang F, Xu W, Liu Y, Zhu D (2012) Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. J Am Chem Soc 134:4084–4087CrossRefGoogle Scholar
  34. 34.
    Zhong H, Smith J, Rossbauer S, White AJP, Anthopoulos TD, Heeney M (2012) Air-stable and high-mobility n-channel organic transistors based on small-molecule/polymer semiconducting blends. Adv Mater 24:3205–3211CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Kim C, Lin J, Nguyen T-Q (2012) Solution-processed ambipolar field-effect transistor based on diketopyrrolopyrrole functionalized with benzothiadiazole. Adv Funct Mater 22:97–105CrossRefGoogle Scholar
  36. 36.
    Song B, Wei H, Wang Z, Zhang X, Smet M, Dehaen W (2007) Supramolecular nanofibers by self-organization of bola-amphiphiles through a combination of hydrogen bonding and π–π stacking interactions. Adv Mater 19:416–420CrossRefGoogle Scholar
  37. 37.
    Kong H, Chung DS, Kang I-N, Lim E, Jung YK, Park J-H, Park CE, Shim H-K (2007) Fluorene-based conjugated copolymers containing hexyl-thiophene derivatives for organic thin film transistors. Bull Korean Chem Soc 28:1945–1950CrossRefGoogle Scholar
  38. 38.
    Palai AK, Cho H, Cho S, Shin T, Jang S, Park S-U, Pyo S (2013) Non-functionalized soluble diketopyrrolopyrrole: simplest p-channel core for organic field-effect transistors. Org Electron 14:1396–1406CrossRefGoogle Scholar
  39. 39.
    Zou Y, Gendron D, Badrou-Aich R, Najari A, Tao Y, Lecrerc M (2009) A high-mobility low-bandgap poly(2,7-carbazole) derivative for photovoltaic applications. Macromolecules 42:2891–2894CrossRefGoogle Scholar
  40. 40.
    Spartan’10 Wavefunction, Inc. Irvine, CAGoogle Scholar
  41. 41.
    Sonar P, Ng G-M, Lin TT, Dodabalapur A, Chen Z-K (2010) Solution processable low bandgap diketopyrrolopyrrole (DPP) based derivatives: novel acceptors for organic solar cells. J Mater Chem 20:3626–3636CrossRefGoogle Scholar
  42. 42.
    Sonar P, Singh SP, Leclere P, Surin M, Lazzaroni R, Lin TT, Dodabalapur A, Sellinger A (2009) Synthesis, characterization and comparative study of thiophene-benzothiadiazolebased donor–acceptor–donor (D–A–D) materials. J Mater Chem 19:3228–3237CrossRefGoogle Scholar
  43. 43.
    Leontie L, Danac R, Girtan M, Carlescu A, Rambu AP, Rusu GI (2012) Electron transport properties of some new 4-tert-butylcalix[4]arene derivatives in thin films. Mater Chem Phys 135:123–129CrossRefGoogle Scholar
  44. 44.
    Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 7:4169–4176CrossRefGoogle Scholar
  45. 45.
    Kuwabara J, Yamagata T, Kanbara T (2010) Solid-state structure and optical properties of highly fluorescent diketopyrrolopyrrole derivatives synthesized by cross-coupling reaction. Tetrahedron 66:3736–3741CrossRefGoogle Scholar
  46. 46.
    Huang J, Jia H, Li L, Lu Z, Zhang W, He W, Jiang B, Tang A, Tan Z, Zhan C, Li Y, Yao J (2012) Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units. Phys Chem Chem Phys 14:14238–14242CrossRefGoogle Scholar
  47. 47.
    Menard E, Podzorov V, Hur S-H, Gaur A, Gershenson ME, Rogers JA (2004) High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv Mater 16:2097–2101CrossRefGoogle Scholar
  48. 48.
    Kim SH, Jang M, Kim J, Choi H, Baek K-Y, Park CE, Yang H (2012) Complementary photo and temperature cured polymer dielectrics with high-quality dielectric properties for organic semiconductors. J Mater Chem 22:19940–19947CrossRefGoogle Scholar
  49. 49.
    Gundlach DJ, Pernstich KP, Wilckens G, Grüter M, Haas S, Batlogg B (2005) High mobility n-channel organic thin-film transistors and complementary inverters. J Appl Phys 98:064502(1–8)Google Scholar
  50. 50.
    Kim S, Lim T, Sim K, Kim H, Choi Y, Park K, Pyo S (2011) Light sensing in a photoresponsive, organic-based complementary inverter. ACS Appl Mater Interfaces 3:1451–1456CrossRefGoogle Scholar
  51. 51.
    Kim SH, Kang I, Kim YG, Hwang HR, Kim Y-H, Kwon S-K, Jang J (2013) High performance ink-jet printed diketopyrrolopyrrole-based copolymer thin-film transistors using a solution-processed aluminium oxide dielectric on a flexible substrate. J Mater Chem C 1:2408–2411CrossRefGoogle Scholar
  52. 52.
    Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Scintific reports 2:754. doi: 10.1038/srep00754 Google Scholar
  53. 53.
    Roelofs WSC, Mathijssen SGJ, Bijleveld JC, Raiteri D, Geuns TCT, Kemerink M, Cantatore E, Janssen RAJ, de Leeuw DM (2011) Fast ambipolar integrated circuits with poly(diketopyrrolopyrrole-terthiophene). Appl Phys Lett 98:203301(1–3)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Akshaya K. Palai
    • 1
  • Jihee Lee
    • 1
  • Minkyung Jea
    • 1
  • Hanah Na
    • 1
  • Tae Joo Shin
    • 2
  • Soonmin Jang
    • 3
  • Seung-Un Park
    • 1
  • Seungmoon Pyo
    • 1
  1. 1.Department of ChemistryKonkuk UniversitySeoulRepublic of Korea
  2. 2.Pohang Accelerator LaboratoryPohangRepublic of Korea
  3. 3.Department of ChemistrySejong UniversitySeoulRepublic of Korea

Personalised recommendations