Journal of Materials Science

, Volume 49, Issue 10, pp 3823–3830 | Cite as

Processing, spark plasma sintering, and mechanical behavior of alumina/titanium composites

  • C. F. Gutierrez-Gonzalez
  • E. Fernandez-Garcia
  • A. Fernandez
  • R. Torrecillas
  • S. Lopez-Esteban


This paper focuses on the study of the processing and mechanical properties, (flaw tolerance and R-curve behavior) of alumina–titanium ceramic–metal composites produced by spark plasma sintering. In order to obtain homogenously dispersed composites, a rheological study was carried out by measuring the flow behavior in different conditions of solid content, amount of dispersant and shear stress. It has been found that, with the suitable conditions (80 wt% solids and 3 wt% deflocculant), a ceramic–metal homogeneously dispersed (Al2O3–Ti) composite can be obtained. After sintering, the composites were mechanically tested and the cermet showed an important improvement in the flaw tolerance and R-curve behavior when compared with the monolithic material. It has been demonstrated by scanning electronic microscopy that this improvement is a consequence of the reinforcement mechanisms provided by the metallic particles that interact with the crack producing a notable increase in toughness up to ~8 MPa m1/2.


Spark Plasma Sinter Crack Extension Metallic Particle Indentation Load Titanium Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under the Project MAT2009-14542-C02-02 and by the Spanish Ministry of Economy and competitiveness (MINECO) under the Project MAT2012‐38645. E. Fernandez-Garcia acknowledges CSIC and ESF for the concession of a JAE-PreDoc 2010 grant. C.F. Gutierrez-Gonzalez acknowledges CSIC and ESF for the concession of a JAE-Doc 2009 grant.


  1. 1.
    Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385:217–222CrossRefGoogle Scholar
  2. 2.
    Bartolome JF, Montero I, Diaz M, Lopez-Esteban S, Moya JS (2004) Accelerated aging in 3-mol%-yttria-stabilized tetragonal zirconia ceramics sintered in reducing conditions. J Am Ceram Soc 87:2282–2285CrossRefGoogle Scholar
  3. 3.
    Dusza J, Steen M (1999) Fractography and fracture mechanics property assessment of advanced structural ceramics. Int Mater Rev 44:165–216CrossRefGoogle Scholar
  4. 4.
    Gutierrez-Gonzalez CF, Bartolome JF (2008) Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism. J Mater Res 23:570–578CrossRefGoogle Scholar
  5. 5.
    Moya JS, Rodriguez-Suarez T, Lopez-Esteban S, Pecharroman C, Torrecillas R, Diaz LA et al (2007) Diamond-like hardening of alumina/Ni nanocomposites. Adv Eng Mater 9:898–901CrossRefGoogle Scholar
  6. 6.
    Esteban-Betegon F, Lopez-Esteban S, Requena J, Pecharroman C, Moya JS, Conesa JC (2006) Obtaining Ni nanoparticles on 3Y-TZP powder from nickel salts. J Am Ceram Soc 89:144–150CrossRefGoogle Scholar
  7. 7.
    Fernandez-García E, Gutiérrez-González CF, Fernández A, Torrecillas R, López-Esteban S (2013) Processing and spark plasma sintering of zirconia/titanium cermets. Ceram Int 36:6931–6936CrossRefGoogle Scholar
  8. 8.
    Raddatz O, Schneider GA, Mackens W, Voss H, Claussen N (2000) Bridging stresses and R-curves in ceramic/metal composites. J Eur Ceram Soc 20:2261–2273CrossRefGoogle Scholar
  9. 9.
    Flinn BD, Ruhle M, Evans AG (1989) Toughening in composites of Al2O3 reinforced with Al. Acta Met Mater 37:3001–3006CrossRefGoogle Scholar
  10. 10.
    Gutierrez-Gonzalez CF, Agouram S, Torrecillas R, Moya JS, Lopez-Esteban S (2012) Ceramic/metal nanocomposites by lyophilization: processing and HRTEM study. Mater Res Bull 47:285–289CrossRefGoogle Scholar
  11. 11.
    Moya JS, Lopez-Esteban S, Pecharroman C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Prog Mater Sci 52:1017–1090CrossRefGoogle Scholar
  12. 12.
    Lopez-Esteban S, Rodriguez-Suarez T, Esteban-Betegon F, Pecharroman C, Moya JS (2006) Mechanical properties and interfaces of zirconia/nickel in micro- and nanocomposites. J Mater Sci 41:5194–5199. doi: 10.1007/s10853-006-0441-9 CrossRefGoogle Scholar
  13. 13.
    Lange FF, Lam DCC, Sudre O, Flinn BD, Folsom C, Velamakanni BV et al (1991) Powder processing of ceramic matrix composites. Mater Sci Eng A 144:143–152CrossRefGoogle Scholar
  14. 14.
    Zein Eddine W, Matteazzi P, Celis JP (2013) Mechanical and tribological behavior of nanostructured copper–alumina cermets obtained by pulsed electric current sintering. Wear 297:762–773CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Suarez T, Díaz LA, Torrecillas R, Lopez-Esteban S, Tuan WH, Nygren M et al (2009) Alumina/tungsten nanocomposites obtained by spark plasma sintering. Compos Sci Technol 69:2467–2473CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Suarez T, Bartolomé JF, Smirnov A, Lopez-Esteban S, Torrecillas R, Moya JS (2011) Sliding wear behaviour of alumina/nickel nanocomposites processed by a conventional sintering route. J Eur Ceram Soc 31:1389–1395CrossRefGoogle Scholar
  17. 17.
    Chmielewski M, Pietrzak K (2007) Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposites. J Eur Ceram Soc 27:1273–1279CrossRefGoogle Scholar
  18. 18.
    Stech M, Rodel J (1996) Method for measuring short-crack R-curves without calibration parameters: case studies on alumina and alumina aluminum composites. J Am Ceram Soc 79:291–297CrossRefGoogle Scholar
  19. 19.
    Sbaizero O, Pezzotti G, Nishida T (1998) Fracture energy and R-curve behavior of Al2O3/Mo composites. Acta Mater 46:681–687CrossRefGoogle Scholar
  20. 20.
    Gunther R, Klassen T, Dickau B, Gartner F, Bartels A, Bormann R (2001) Advanced alumina composites reinforced with titanium-based alloys. J Am Ceram Soc 84:1509–1513CrossRefGoogle Scholar
  21. 21.
    Edalati K, Iwaoka H, Horita Z, Konno M, Sato T (2011) Unusual hardening in Ti/Al2O3 nanocomposites produced by high-pressure torsion followed by annealing. Mater Sci Eng A 529:435–441CrossRefGoogle Scholar
  22. 22.
    Mas-Guindal MJ, Benko E, Rodríguez MA (2008) Nanostructured metastable cermets of Ti–Al2O3 through activated SHS reaction. J Alloy Compd 454:352–358CrossRefGoogle Scholar
  23. 23.
    Braichotte G, Cizeron G (1989) Sintering of (alumina + titanium) powder mixtures and elaboration of the corresponding cermets. J Mater Sci 24:3123–3136. doi: 10.1007/BF01139030 CrossRefGoogle Scholar
  24. 24.
    Wu S, Gesing AJ, Travitzky NA, Claussen N (1991) Fabrication and properties of Al-infiltrated RBAO-based composites. J Eur Ceram Soc 7:277–281CrossRefGoogle Scholar
  25. 25.
    Toy C, Scott WD (1990) Ceramic-metal composite produced by melt infiltration. J Am Ceram Soc 73:97–101CrossRefGoogle Scholar
  26. 26.
    Naga SM, El-Maghraby A, El-Rafei AM (2007) Properties of ceramic–metal composites formed by reactive metal penetration. Am Ceram Soc Bull 86:9301–9313Google Scholar
  27. 27.
    Loehman RE, Ewsuk K, Tomsia AP (1996) Synthesis of Al2O3–Al composites by reactive metal penetration. J Am Ceram Soc 79:27–32CrossRefGoogle Scholar
  28. 28.
    Claussen N, Knechtel M, Prielipp H, Rodel J (1994) A strong variant of cermets. Ber Dtsch Keram Ges 71:301–303Google Scholar
  29. 29.
    Ko SJ, Min KH, Kim YD, Moon IH (2002) A study on the fabrication of Al2O3/Cu nanocomposite and its mechanical properties. J Ceram Process Res 3:192–194Google Scholar
  30. 30.
    Sampath S, Herman H, Shimoda N, Saito T (1995) Thermal spray processing of FGM’s. MRS Bull 20:27–31Google Scholar
  31. 31.
    Peytour C, Barbier F, Berthet P, Revcolevschi A (1990) Characterization of Al2O3/TA6V and ZrO2/TA6V ceramic-metal interfaces. J Phys Colloq C1:897–902Google Scholar
  32. 32.
    Ji H, Jones S, Marquis PM (1995) Characterization of the interaction between molten titanium alloy and Al2O3. J Mater Sci 30:5617–5620. doi: 10.1007/BF00356694 CrossRefGoogle Scholar
  33. 33.
    Lu H, Bao CL, Shen DH, Zhang XJ, Cui YD, Lin ZD (1995) Study of the Ti/Al2O3 interface. J Mater Sci 30:339–346. doi: 10.1007/BF00354393 CrossRefGoogle Scholar
  34. 34.
    Wang Z, Shi GP, Zhao J, Xing GH (2009) Mechanism and properties of Ti/Al2O3 composites by spark plasma sintering technique. Rare Met Mater Eng 38:450–453Google Scholar
  35. 35.
    Braun LM, Bennison SJ, Lawn BR (1992) Objective evaluation of short-crack toughness curves using indentation flaws—case-study on alumina-based ceramics. J Am Ceram Soc 75:3049–3057CrossRefGoogle Scholar
  36. 36.
    Kaliszewski MS, Behrens G, Heuer AH, Shaw MC, Marshall DB, Dransmann GW et al (1994) Indentation studies on Y2O3-stabilized ZrO2.1. Development of indentation-induced cracks. J Am Ceram Soc 77:1185–1193CrossRefGoogle Scholar
  37. 37.
    Smith SM, Scattergood RO (1992) Crack-shape effects for indentation fracture-toughness measurements. J Am Ceram Soc 75:305–315CrossRefGoogle Scholar
  38. 38.
    Li CW, Lee DJ, Lui SC (1992) R-Curve behavior and strength for in situ reinforced silicon nitrides with different microstructures. J Am Ceram Soc 75:1777–1785CrossRefGoogle Scholar
  39. 39.
    Newman JC, Raju IS (1981) An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15:185–192CrossRefGoogle Scholar
  40. 40.
    Samsonov GV (1968) Handbook of the physicochemical properties of the elements. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. F. Gutierrez-Gonzalez
    • 1
  • E. Fernandez-Garcia
    • 1
  • A. Fernandez
    • 1
  • R. Torrecillas
    • 1
    • 2
  • S. Lopez-Esteban
    • 3
  1. 1.Centro de Investigación en Nanomateriales y Nanotecnología (CINN) [Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Oviedo (UO)-Principado de Asturias (PA)]LlaneraSpain
  2. 2.Moscow State University of Technology (STANKIN)MoscowRussian Federation
  3. 3.Instituto de Ciencia de Materiales de Madrid (ICMM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations