Journal of Materials Science

, Volume 49, Issue 10, pp 3785–3794 | Cite as

Preparation of novel fibre–silica–Ag composites: the influence of fibre structure on sorption capacity and antimicrobial activity

  • Danijela Klemenčič
  • Brigita Tomšič
  • Franci Kovač
  • Metka Žerjav
  • Andrej Simončič
  • Barbara Simončič


Novel fibre–silica–Ag composites with biocidal activity were successfully produced by chemical modifying cotton (CO), wool (WO), silk (SE), polyamide (PA) and polyester (PES) fabrics and CO/PES and WO/PES fabric blends. A silica–Ag coating was prepared using a two-step procedure that included the creation of a silica matrix on the fibre surface via the application of an inorganic–organic hybrid sol–gel precursor [reactive binder (RB)] using a pad-dry-cure method, followed by the in situ synthesis of AgCl particles within the RB-treated fibres from solutions of 0.10 mM and 0.50 mM AgNO3 and NaCl. The presence of the coating on the fibres was verified by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The bulk concentration of Ag in the coated fibres was determined using inductively coupled plasma mass spectroscopy. The antimicrobial activity was determined for the bacteria Escherichia coli and Staphylococcus aureus and the fungus Aspergillusniger. The results show that the chemical and morphological structures of the fibres directly influenced their absorptivity and affinity for the Ag compound particles. As the amorphous molecular structure of the fibres and the amount of functional groups available as binding sites for Ag+ were increased, both the silver solution uptake and the concentration of the absorbed Ag compound particles increased. The chemical binding of Ag to the fibres significantly reduced the effectiveness of the antimicrobial activity of the Ag compound particles. Accordingly, an increase in the concentration of absorbed Ag was required to achieve a biocidal effect.


  1. 1.
    Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18CrossRefGoogle Scholar
  2. 2.
    Simončič B, Tomšič B (2010) Structures of novel antimicrobial agents for textiles: a review. Text Res J 80:1721–1737CrossRefGoogle Scholar
  3. 3.
    Radetić M (2013) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107CrossRefGoogle Scholar
  4. 4.
    Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing Ltd, CambridgeCrossRefGoogle Scholar
  5. 5.
    Hoefer D, Hammer TR (2011) Antimicrobial active clothes display no adverse effects on the ecological balance of the healthy human skin microflora. ISRN Dermatol. article ID 369603, 8 pagesGoogle Scholar
  6. 6.
    Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interaction with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754CrossRefGoogle Scholar
  7. 7.
    Lansdown ABG (2010) Silver in healthcare: its antimicrobial efficacy and safety in use. The Royal Society of Chemistry, CambridgeGoogle Scholar
  8. 8.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  9. 9.
    Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevečná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  10. 10.
    Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRefGoogle Scholar
  11. 11.
    Tomšič B (2009) Influence of particle size of the silver on bactericidal activity of the cellulose fibres. Tekstilec 52:181–194Google Scholar
  12. 12.
    Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654CrossRefGoogle Scholar
  13. 13.
    Lu Z, Rong K, Li J, Hao Yang, Chen R (2013) Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci 24:1465–1471. doi:10.1007/s10856-013-4894-5 Google Scholar
  14. 14.
    Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A 289:105–109CrossRefGoogle Scholar
  15. 15.
    Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705CrossRefGoogle Scholar
  16. 16.
    Tomšič B, Simončič B, Orel B, Žerjav M, Schroers H, Simončič A, Samardžija Z (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626CrossRefGoogle Scholar
  17. 17.
    Zhu C, Xue J, He J (2009) Controlled in situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 9:3067–3074CrossRefGoogle Scholar
  18. 18.
    Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRefGoogle Scholar
  19. 19.
    Gorjanc M, Kovač F, Gorenšek M (2012) The influence of vat dyeing on the adsorption of synthesized colloidal silver onto cotton fabrics. Text Res J 82:62–69CrossRefGoogle Scholar
  20. 20.
    Zhang D, Toh GW, Lin H, Chen Y (2012) In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing. J Mater Sci 47:5721–5728. doi:10.1007/s10853-012-6462-7 CrossRefGoogle Scholar
  21. 21.
    Klemenčič D, Tomšič B, Kovač F, Simončič B (2012) Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix. Cellulose 19:1715–1726CrossRefGoogle Scholar
  22. 22.
    Shastri JP, Rupani MG, Jain RL (2012) Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J Text Inst 103:1234–1243CrossRefGoogle Scholar
  23. 23.
    Shinde VV, Jadhav PR, Kim JH, Patil PS (2013) One-step synthesis and characterization of anisotropic silver nanoparticles: application for enhanced antibacterial activity of natural fabric. J Mater Sci 48:8393–8401. doi:10.1007/s10853-013-7651-8 CrossRefGoogle Scholar
  24. 24.
    Klemenčič D, Tomšič B, Kovač F, Žerjav M, Simončič A, Simončič B (2013) Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids Surf B 111:517–522CrossRefGoogle Scholar
  25. 25.
    Tang B, Kaur J, Sun L, Wang X (2013) Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose 20:3053–3065CrossRefGoogle Scholar
  26. 26.
    Milošević M, Radoičić M, Šaponjić Z, Nunney T, Marković D, Nedeljković J, Radetić M (2013) In situ generation of Ag nanoparticles on polyester fabrics by photoreduction using TiO2 nanoparticles. J Mater Sci 48:5447–5455. doi:10.1007/s10853-013-7338-1 CrossRefGoogle Scholar
  27. 27.
    Klemenčič D, Muha P, Klepacka W, Tomšič B, Demšar A, Aneja AP, Žagar K, Simončič B (2013) Influence of the preparation procedure of colloidal silver solution on the properties of fibres from polylactic acid. Tekstilec 56:302–311Google Scholar
  28. 28.
    Kissa E (1984) In: Lewin M, Sello SB (eds) Handbook of fiber science and technology: Volume II, chemical processing of fibers and fabrics: functional finishes, Part B. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Rippon JA (1992) In: Lewis DM (ed) Wool dyeing. Society of Dyers and Colourists, BradfordGoogle Scholar
  30. 30.
    Collier BJ, Tortora PG (2001) Understanding textiles, 6th edn. Prentice-Hall, New JerseyGoogle Scholar
  31. 31.
    Cook JG (1993) Handbook of textile fibres I. Natural fibres, 5th edn. Merrow Publishing Co. Ltd, DurhamGoogle Scholar
  32. 32.
    Cook JG (1993) Handbook of textile fibres II. Man-made fibres, 5th edn. Merrow Publishing Co. Ltd, DurhamGoogle Scholar
  33. 33.
    Sumner HH (1989) In: Johnson A (ed) The theory of coloration of textiles, 2nd edn. Society of Dyers and Colourists, BradfordGoogle Scholar
  34. 34.
    Hearle JWS (2001) In: Woodings C (ed) Regenerated cellulose fibres. The Textile Institute, Woodhead Publishing Limited, CambridgeGoogle Scholar
  35. 35.
    Barani H, Montazer M, Samadi N, Toliyat T (2012) In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion. Colloid Surf B 92:9–15CrossRefGoogle Scholar
  36. 36.
    Tomšič B, Jerman I, Orel B, Simončič B (2011) Efficiency of silver based antimicrobial finish on cellulose fibres: covalently versus physically bonded silver. In: Adolphe D (ed) 150 years of research and innovation in textile science, Book of proceedings of 11th World Textile Conference AUTEX. Mulhouse, France, pp 1062–1068Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Danijela Klemenčič
    • 1
  • Brigita Tomšič
    • 1
  • Franci Kovač
    • 2
  • Metka Žerjav
    • 3
  • Andrej Simončič
    • 3
  • Barbara Simončič
    • 1
  1. 1.Department of Textiles, Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Agricultural Institute of SloveniaLjubljanaSlovenia

Personalised recommendations