Advertisement

Journal of Materials Science

, Volume 49, Issue 9, pp 3497–3510 | Cite as

Crystal structure and magnetic properties of CuSb2O4

  • M. T. Atanasova
  • A. M. Strydom
  • C. J. H. Schutte
  • L. C. Prinsloo
  • W. W. FockeEmail author
Article

Abstract

The crystal structure of a copper antimonite (CuSb2O4) was determined from X-ray powder diffraction data. The structure was solved by simulated annealing in direct space using the Rietveld method. The compound crystallizes in tetragonal symmetry and space group P4 2 bc (106); unit cell parameters a = b = 8.76033(5) Å, c = 5.79786(4) Å, Z = 4, V = 444.947(5) Å3 and density (calc.) = 5.539 g cm−3. The CuO6 polyhedra are strongly elongated due to Jahn–Teller distortion in a [2+2+2] coordination arrangement, i.e. there are two long axial Cu–O1 bonds of 2.447(13) Å and in the equatorial plane there are two intermediate Cu–O2 bonds of 2.07(3) Å and two short Cu–O2 bonds of 1.88(2) Å. The SbO3 pyramidal arrangement is almost regular with Sb–O1 bonds of 1.97(2) Å (2×) and Sb–O2 of 1.959(5) Å. The experimentally obtained Raman spectrum is consistent with values obtained from theoretical modelling studies. The magnetic behaviour of this new compound suggests that it belongs to the class of S = 1/2 Heisenberg chain systems.

Keywords

Sb2O3 Powder Diffraction Data Physical Property Measurement System Heisenberg Chain Inorganic Crystal Structure Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Financial support for this research from AEL Mining Services and the THRIP programme of the Department of Trade and Industry and the National Research Foundation of South Africa is gratefully acknowledged. AMS thanks the NRF (78832) and the URC of UJ for financial assistance.

Supplementary material

10853_2014_8063_MOESM1_ESM.docx (1.9 mb)
Crystallographic data in CIF format. X-ray Powder Diffraction Data for CuSb2O4 (Table S.1). Geometric Parameters for CuSb2O4 (Table S.2). Experimental Raman spectra (Figure S.1). Photograph of the CuSb2O4 and CuSb2O6 powders (Figure S.2). TGA-DTA curve for CuSb2O4 heated in air (Figure S.3). Rietveld quantitative results for CuSb2O4 and Sb2O3 (Figure S.4). (DOCX 1939 kb)

References

  1. 1.
    Stan M, Mihaiu S, Crisan D, Zaharescu M (1998) Subsolidus phase equilibrium in the Cu-Sb-O system. Eur J Solid State Inorg Chem 35(3):243–254CrossRefGoogle Scholar
  2. 2.
    Kasinathan D, Koepernik K, Rosner H (2008) Quasi-one-dimensional magnetism driven by unusual orbital ordering in CuSb2O6. Phys Rev Lett 100:23CrossRefGoogle Scholar
  3. 3.
    Swanson HE, McMurdie HF, Morris MC, Evans EH (1967) Standard X-ray diffraction powder patterns. National Bureau of Standards, Washington DCGoogle Scholar
  4. 4.
    Simada S, Mackenzie KJD (1982) Solid-state reactions in the system Cu-Sb-O; Formation of a new copper(I) antimony oxide. Thermochim Acta 56(1):73–82CrossRefGoogle Scholar
  5. 5.
    Nakua A, Yun H, Reimers JN, Greedan JE, Stager CV (1991) Crystal structure, short range and long range magnetic ordering in CuSb2O6. J Solid State Chem 91(1):105–112CrossRefGoogle Scholar
  6. 6.
    Ramos EI, Isasi J, Galtan M, Veiga ML (1991) Synthesis and structural characterization of Sb(V) oxides with rutile and trirutile structures. Anales de Química 87:966–969Google Scholar
  7. 7.
    Byström AH, Hök B, Mason B (1941) The crystal structure of zinc metantimonate and similar compounds. Arkiv for Kemi Mineralogi och Geologi 15B(4):1–8Google Scholar
  8. 8.
    Shimada S, Kodaira K, Matsushita T (1985) Preparation and characterization of a new copper antimony oxide, Cu9Sb4O19. J Solid State Chem 59(2):237–241. doi: 10.1016/0022-4596(85)90323-8 CrossRefGoogle Scholar
  9. 9.
    Shimada S, Mackenzie KJD, Kodaira K, Matsushita T, Ishii T (1988) Formation of new copper antimony oxides by solid state reaction between CuSb2O6 and CuO under atmospheric and high pressure. Thermochim Acta 133:73–77. doi: 10.1016/0040-6031(88)87139-9 CrossRefGoogle Scholar
  10. 10.
    Giere EO, Brahimi A, Deiseroth HJ, Reinen D (1997) The geometry and electronic structure of the Cu2+ polyhedra in trirutile-type compounds Zn(Mg)1−x CuxSb2O6 and the dimorphism of CuSb2O6: a solid state and EPR study. J Solid State Chem 131(2):263–274CrossRefGoogle Scholar
  11. 11.
    Mellor JW (1933) A comprehensive treatise on inorganic and theoretical chemistry, vol. IX: the antimonious acids and the antimonites. Longmans, Green and Co, LondonGoogle Scholar
  12. 12.
    Ricco IMM, Focke WW, Conradie C (2004) Alternative oxidants for silicon fuel in time-delay compositions. Combust Sci Technol 176(9):1565–1575CrossRefGoogle Scholar
  13. 13.
    Focke WW, Mkhize SS, Storey R, Fabbro OD, Muller E (2014) Facile synthesis of copper antimonite. Chem Eng Commun 201(2):153–159CrossRefGoogle Scholar
  14. 14.
    Powder Diffraction File (2006) International Centre for Diffraction DataGoogle Scholar
  15. 15.
    Inorganic Crystal Structure Database (2012) FIZ KarlsruheGoogle Scholar
  16. 16.
    Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Crystallogr 33:899–908CrossRefGoogle Scholar
  17. 17.
    Coelho AA (2003) Indexing of powder diffraction patterns by iterative use of singular value decomposition. J Appl Crystallogr 36:86–95CrossRefGoogle Scholar
  18. 18.
    Le Bail AL, Laligart Y, Jouanneaux A (2000) Structure determination by Powder Diffractometry. In: EPDIC7: 7th European powder diffraction conference, Barcelona, 20–23 May 2000Google Scholar
  19. 19.
    Bergmann J, Le Bail A, Shirley R, Zlokazov V (2004) Renewed interest in powder diffraction data indexing. Zeitschrift fur Kristallographie 219(12):783–790CrossRefGoogle Scholar
  20. 20.
    Shankland K, David WIF, Sivia DS (1997) Routine ab initio structure determination of chlorothiazide by X-ray powder diffraction using optimised data collection and analysis strategies. J Mater Chem 7(3):569–572CrossRefGoogle Scholar
  21. 21.
    Von Dreele RB, Stephens PW, Smith GD, Blessing RH (2000) The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding. Acta Crystallogr D Biol Crystallogr 56(12):1549–1553CrossRefGoogle Scholar
  22. 22.
    Lehmann CW, Stowasser F (2007) The crystal structure of anhydrous β-caffeine as determined from X-ray powder-diffraction data. Chem Eur J 13(10):2908–2911CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Laugier JB, Bochu B (2002) LMGP-suite of programs for the interpretation of X-ray experiments. Chekcell ENSP/Laboratoire des Matériaux et du Génie Physique, Saint Martin d’Hères, FranceGoogle Scholar
  25. 25.
    Evans JSO (2010) jEdit 4.3.1 for TOPAS. Mater Sci Forum 651:1CrossRefGoogle Scholar
  26. 26.
    Anon (2012) Prediction of physical and chemical materials properties. http://www.materialsdesign.com/
  27. 27.
    Anon (2010) MedeA Materials design and exploration analysis software. 2.5.17.2 edn. Materials Design, Inc.Google Scholar
  28. 28.
    Anon (2012) MedeA User’s Guide. 2.4 edn.Google Scholar
  29. 29.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  32. 32.
    Parlinski K (2005) Software PHONON, Cracow. http://wolf.ifj.edu.pl/phonon/
  33. 33.
    Schutte CJH (1976) The theory of molecular spectroscopy. the quantum mechanics and group theory of vibrating and rotating molecules, vol 1. North-Holland Publication and Co., AmsterdamGoogle Scholar
  34. 34.
    Schutte CJH, Pretorius JA (2012) A computational study of the molecular and crystal structure and selected physical properties of octahydridosilasequioxane, (Si 2O 3H 2) 4. II. Vibrational analysis. Proc R Soc A 468(2139):851–870CrossRefGoogle Scholar
  35. 35.
    Schutte CJH, Pretorius JA (2011) A computational study of the molecular and crystal structure and selected physical properties of octahydridosilasequioxane-(Si2O 3H2)4. I. Electronic and structural aspects. Proc R Soc A 467(2128):928–953CrossRefGoogle Scholar
  36. 36.
    Schutte CJH (1973) Topics in current chemistry. Infra Red Spectra of Crystalline Solids 36:57Google Scholar
  37. 37.
    Eby RK, Hawthorne FC (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr Sect B 49(1):28–56. doi: 10.1107/S0108768192007274 CrossRefGoogle Scholar
  38. 38.
    Cooper MAH, Howthorne FC (1995) The crystal structure of mottramite, and the nature of CU⇌Zn solid solution in the mottramite-descloizite series. Can Mineralogist 33:1119–1124Google Scholar
  39. 39.
    Burns PC, Howthorne FC (1995) Coordination-geometry structural pathways in Cu (2+) oxysalt minerals. Can Mineralogist 33:889–905Google Scholar
  40. 40.
    Gavarri JR (1982) Evolution structurale d’oxydes isomorphes MeX2O4: Relation entre dilatation, vibrations et rigidite. J Solid State Chem 43(1):12–28CrossRefGoogle Scholar
  41. 41.
    Gutierrez Puebla E, Gutierrez Rios E, Monge A, Rasines I (1982) Crystal growth and structure of diantimony(III) zinc oxide. Acta Crystallogr Sect B 38(7):2020–2022. doi: 10.1107/S0567740882007791 CrossRefGoogle Scholar
  42. 42.
    Prokofiev AV, Ritter F, Assmus W, Gibson BJ, Kremer RK (2003) Crystal growth and characterization of the magnetic properties of CuSb2O6. J Cryst Growth 247(3–4):457–466. doi: 10.1016/S0022-0248(02)02062-6 CrossRefGoogle Scholar
  43. 43.
    Rebello A, Smith MG, Neumeier JJ, White BD, Yu YK (2013) Transition from one-dimensional antiferromagnetism to three-dimensional antiferromagnetic order in single-crystalline CuSb2O6. Phys Rev B 87 (22)Google Scholar
  44. 44.
    Gibson BJ, Kremer RK, Prokofiev AV, Assmus W, Ouladdiaf B (2004) Elastic neutron diffraction study of long-range antiferro-magnetic order in the S = 1/2 quantum chain system CuSb2O6. J Magn Magn Mater 272–276:927–928CrossRefGoogle Scholar
  45. 45.
    Yang CN, Yang CP (1966) One-dimensional chain of anisotropic spin–spin interactions. Phys Lett 20(1):9–10CrossRefGoogle Scholar
  46. 46.
    Yang CN, Yang CP (1966) One-dimensional chain of anisotropic spin–spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys Rev 150(1):327–339CrossRefGoogle Scholar
  47. 47.
    Yang CN, Yang CP (1966) One-dimensional chain of anisotropic spin–spin interactions. III. Applications. Phys Rev 151(1):258–264CrossRefGoogle Scholar
  48. 48.
    Hatfield WE (1981) New magnetic and structural results for uniformly spaced, alternatingly spaced, and ladder-like copper (II) linear chain compounds (invited). J Appl Phys 52(3):1985–1990CrossRefGoogle Scholar
  49. 49.
    Bonner JC (1978) One-dimensional model systems: theoretical survey. J Appl Phys 49(3):1299–1304CrossRefGoogle Scholar
  50. 50.
    Johnston DC, Kremer RK, Troyer M, Wang X, Klümper A, Bud’ko SL, Panchula AF, Canfield PC (2000) Thermodynamics of spin S = 1/2 antiferromagnetic uniform and alternating-exchange Heisenberg chains. Physl Rev B 61(14):9558–9606CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. T. Atanasova
    • 1
  • A. M. Strydom
    • 2
    • 3
  • C. J. H. Schutte
    • 4
  • L. C. Prinsloo
    • 5
  • W. W. Focke
    • 6
    Email author
  1. 1.Council for GeosciencePretoriaSouth Africa
  2. 2.Department of Physics, Science FacultyUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  4. 4.Department of Chemistry and Unit for Advanced StudyUniversity of PretoriaHatfieldSouth Africa
  5. 5.Department of PhysicsUniversity of PretoriaHatfieldSouth Africa
  6. 6.Department of Chemical Engineering, Institute of Applied MaterialsUniversity of PretoriaHatfieldSouth Africa

Personalised recommendations