Journal of Materials Science

, Volume 49, Issue 11, pp 3996–4006 | Cite as

Influence of laser annealing on the structural properties of sputtered AlN:Ag plasmonic nanocomposites

  • C. Bazioti
  • G. P. Dimitrakopulos
  • Th. Kehagias
  • Ph. Komninou
  • A. Siozios
  • E. Lidorikis
  • D. C. Koutsogeorgis
  • P. Patsalas
Interfaces and Intergranular Boundaries


We propose a process of deposition of plasmonic nanocomposites comprising magnetron sputtering of AlN:Ag multilayers combined with intermediate steps of flash annealing. When the AlN matrix structure was amorphous, thermal annealing induced the break-up of silver layers and the formation of homogeneously distributed spherical nanoparticles. On the other hand, in the case of a nanocrystalline AlN matrix, the larger nanoparticles were observed to form only at an interfacial and a surface zone. Further treatment by laser annealing was employed in order to photo-modulate the localized surface plasmon resonances (LSPRs) by promoting ripening of the nanoparticles. Using high resolution transmission electron microscopy, it was observed that laser annealing caused nanoparticle enlargement with a concurrent improvement of their separation, while retaining their average spherical shape. Optical reflectance measurements showed that better LSPR was obtained when the AlN matrix was amorphous due to the restrained nanoparticle ripening inside nanocrystalline AlN. Roughening at the film/substrate interface and film degradation after laser annealing at the employed radiation wavelength where reduced compared to similar samples grown by pulsed laser deposition. Based on finite difference time domain simulations and X-ray reflectivity measurements, this was attributed to the improved quality of the AlN matrix.


Pulse Laser Deposition Localize Surface Plasmon Resonance Magnetron Sputtering Finite Difference Time Domain Laser Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been partially supported by the European Union through the FP7 project SMARTONICS, Grant Agreement No. 310229.


  1. 1.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685CrossRefGoogle Scholar
  2. 2.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547CrossRefGoogle Scholar
  3. 3.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797CrossRefGoogle Scholar
  4. 4.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442CrossRefGoogle Scholar
  5. 5.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828CrossRefGoogle Scholar
  6. 6.
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736CrossRefGoogle Scholar
  7. 7.
    Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440CrossRefGoogle Scholar
  8. 8.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135CrossRefGoogle Scholar
  9. 9.
    Halas NJ (2010) Plasmonics: an emerging field fostered by Nano Letters. Nano Lett 10:3816CrossRefGoogle Scholar
  10. 10.
    Lu X, Rycenga M, Skrabalak SE, Wiley BJ, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167CrossRefGoogle Scholar
  11. 11.
    Walters G, Parkin IPJ (2009) The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterization and applications. Mater Chem 19:574CrossRefGoogle Scholar
  12. 12.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189CrossRefGoogle Scholar
  13. 13.
    Van Duyne RP (2004) Molecular plasmonics. Science 306:985CrossRefGoogle Scholar
  14. 14.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  15. 15.
    Kvitek O, Siegel J, Hnatowicz V, Švorčík V (2013) Noble metal nanostructures: influence of structure and environment on their optical properties. J Nanomater 2013:743684Google Scholar
  16. 16.
    Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New YorkGoogle Scholar
  17. 17.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley Interscience, New YorkGoogle Scholar
  19. 19.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou SL (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368CrossRefGoogle Scholar
  20. 20.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668CrossRefGoogle Scholar
  21. 21.
    Lee KS, El-Sayed MAJ (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition. Phys Chem B 110:19220CrossRefGoogle Scholar
  22. 22.
    Underwood S, Mulvaney P (1994) Effect of solution refractive index on the color of gold colloids. Langmuir 10:3427CrossRefGoogle Scholar
  23. 23.
    Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556CrossRefGoogle Scholar
  24. 24.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz SJ (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Chem Phys 116:6755CrossRefGoogle Scholar
  25. 25.
    Halas NJ (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30:362CrossRefGoogle Scholar
  26. 26.
    Mishra YK, Mohapatra S, Kabiraj D, Mohanta B, Lalla NP, Pivin JC, Avasthi DK (2007) Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scr Mater 56:629CrossRefGoogle Scholar
  27. 27.
    Cho S, Lee S, Oh S et al (2000) Optical properties of Au nanocluster embedded dielectric films. Thin Solid Films 377–378:97CrossRefGoogle Scholar
  28. 28.
    Tabahashi I, Manabe Y, Tohda T, Sasaki S, Nakamura A (1996) Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J Appl Phys 79:1244CrossRefGoogle Scholar
  29. 29.
    Lamarre J-M, Yu Z, Harkati C, Roorda S, Martinu L (2005) Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation. Thin Solid Films 479:232CrossRefGoogle Scholar
  30. 30.
    Sangpour P, Akhavan O, Moshfegh AZ, Roozbehi M (2007) Formation of gold nanoparticles in heat-treated reactive co-sputtered Au–SiO2 thin films. Appl Surf Sci 254:286CrossRefGoogle Scholar
  31. 31.
    Liu Z, Wang H, Li H, Wang X (1998) Redshift of plasmon resonance frequency due to interacting Ag nanoparticles embedded in single crystal SiO2 by implantation. Appl Phys Lett 72:1823CrossRefGoogle Scholar
  32. 32.
    Pedrueza E, Sancho-Parramon J, Bosch S, Valdés JL, Martinez-Pastor JP (2013) Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties. Nanotechnology 24:065202CrossRefGoogle Scholar
  33. 33.
    Lee M, Chae L, Lee KC (1999) Microstructure and surface plasmon absorption of sol–gel-prepared Au nanoclusters in TiO2 thin films. Nanostruct Mater 11:195CrossRefGoogle Scholar
  34. 34.
    Armelao L, Barreca D, Bottaro G et al (2006) Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord Chem Rev 250:1294CrossRefGoogle Scholar
  35. 35.
    Mandal SK, Roy RK, Pal AK (2002) Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix. J Phys D 35:2198CrossRefGoogle Scholar
  36. 36.
    Jiménez JA, Sendova M (2012) Kinetics of Ag nanoparticle growth in thick SiO2 films: an in situ optical assessment of Ostwald ripening. Mater Chem Phys 135:282CrossRefGoogle Scholar
  37. 37.
    Chakravadhanula VSK, Kübel C, Hrkac T, Zaporojtchenko V, Strunskus T, Faupel F, Kienle L (2012) Surface segregation in TiO2-based nanocomposite thin films. Nanotechnology 23:495701CrossRefGoogle Scholar
  38. 38.
    Siozios A, Koutsogeorgis DC, Lidorikis E, Dimitrakopulos GP, Kehagias Th, Zoubos H, Komninou Ph, Cranton WM, Kosmidis C, Patsalas P (2012) Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. Nano Lett 12:259CrossRefGoogle Scholar
  39. 39.
    Lotsari A, Dimitrakopulos GP, Kehagias Th, Kavouras P, Zoubos H, Koutsokeras LE, Patsalas P, Komninou Ph (2010) Structure, stability and mechanical performance of AlN:Ag nanocomposite films. Surf Coat Technol 204:1937CrossRefGoogle Scholar
  40. 40.
    Siozios A, Zoubos H, Pliatsikas N, Koutsogeorgis DC, Vourlias G, Pavlidou E, Cranton W, Patsalas P (2014) Growth and annealing strategies to control the microstructure of AlN:Ag nanocomposite films for plasmonic applications. Surf Coat Technol. doi: 10.1016/j.surfcoat.2013.11.025
  41. 41.
    Alloyeau D, Ricolleau C, Langlois C, Le Bouar Y, Loiseau A (2010) Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles, Beilstein. J Nanotechnol 1:55Google Scholar
  42. 42.
    Hofmeister H, Tan GL, Dubiel M (2005) Shape and internal structure of silver nanoparticles embedded in glass. J Mater Res 20:1551CrossRefGoogle Scholar
  43. 43.
    Lekka ChE, Patsalas P, Komninou Ph, Evangelakis GA (2011) Electronic properties and bonding characteristics of AlN:Ag thin film nanocomposites. J Appl Phys 109:054310CrossRefGoogle Scholar
  44. 44.
    Miranda SMC, Kessler P, Correia JG, Vianden R, Johnston K, Alves E, Lorenz K (2012) Ion implantation of Cd and Ag into AlN and GaN. Phys Status Solidi C 9:1060CrossRefGoogle Scholar
  45. 45.
    Lidorikis E, Ferrari AC (2009) Photonics with multiwall carbon nanotube arrays. ACS Nano 3:1238CrossRefGoogle Scholar
  46. 46.
    Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of grapheme. ACS Nano 4:5617CrossRefGoogle Scholar
  47. 47.
    Palik ED (1998) Handbook of optical constants of solids. Academic Press, San DiegoGoogle Scholar
  48. 48.
    Patsalas P, Logothetidis S, Kelires PC (2005) Surface and interface morphology and structure of amorphous carbon thin and multilayer films. Diam Relat Mater 14:1241CrossRefGoogle Scholar
  49. 49.
    Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359CrossRefGoogle Scholar
  50. 50.
    Kortright JB (1991) Nonspecular X-ray scattering from multilayer structures. J Appl Phys 70:3620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. Bazioti
    • 1
  • G. P. Dimitrakopulos
    • 1
  • Th. Kehagias
    • 1
  • Ph. Komninou
    • 1
  • A. Siozios
    • 2
  • E. Lidorikis
    • 2
  • D. C. Koutsogeorgis
    • 3
  • P. Patsalas
    • 1
    • 2
  1. 1.Physics DepartmentAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  3. 3.School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations