Journal of Materials Science

, Volume 49, Issue 9, pp 3337–3351 | Cite as

Schottky barrier versus surface ferroelectric depolarization at Cu/Pb(Zr, Ti)O3 interfaces

  • Laura E. Stoflea
  • Nicoleta G. Apostol
  • Cristina Chirila
  • Lucian Trupina
  • Raluca Negrea
  • Lucian Pintilie
  • Cristian M. Teodorescu


The band bending at Cu/PZT(001) interfaces is investigated by X-ray photoelectron spectroscopy (XPS) for a PZT(001) layer which exhibits initial outwards ferroelectric polarization. Two competitive processes are identified: (a) formation of the Schottky barrier between the ferroelectric and unconnected Cu islands, and (b) coalescence of the Cu islands, realisation of an electrical contact to the ground of the system, inducing the apparent loss of the component of the ferroelectric polarization perpendicular to the sample surface, at least as it manifests in band bending. Three mechanisms are proposed to explain this loss of band bending when a full metal layer connected to ground is formed on the surface: (i) over-compensation of depolarization field in the sub-surface region, (ii) formation of domains with in-plane orientation of the polarization vector and (iii) loss of polarization in the near-surface layers of the ferroelectric due to electrons provided by the metal. These result in a non-monotonous variation of binding energies with the amount of Cu deposited. High resolution transmission electron microscopy and piezoresponse force microscopy confirmed these hypotheses. The XPS data allowed also to derive the surface PZT composition, its evolution with the deposition of copper and the formation of surface compounds.


Schottky Barrier Schottky Diode Ferroelectric Polarization Piezoresponse Force Microscopy Valence Band Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the UEFISCDI Contract PCCE No. 3/2011 granted by the Romanian Ministry of Education. We acknowledge the valuable help of Iuliana Pasuk with the X-ray diffraction data.

Supplementary material

10853_2014_8041_MOESM1_ESM.pdf (264 kb)
Supplementary material 1 (PDF 264 kb)


  1. 1.
    Yang Y, Hu Y, Lu Y (2008) Sensitivity of PZT impedance sensors for damage detection of concrete structures. Sensors 8:327CrossRefGoogle Scholar
  2. 2.
    Bruchhaus R, Pitzer D, Schreiter M, Wersing W (1999) Optimized PZT thin films for pyroelectric IR detector arrays. J Electroceram 3:151CrossRefGoogle Scholar
  3. 3.
    Scott JF (2000) Ferroelectric memories. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Pintilie L, Alexe M (2005) Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties. J Appl Phys 98:124103CrossRefGoogle Scholar
  5. 5.
    Apostol NG, Stoflea LE, Lungu GA, Tache CA, Pintilie L, Teodorescu CM (2013) Band bending at free Pb(Zr, Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater Sci Eng B 178:1317CrossRefGoogle Scholar
  6. 6.
    Sezen H, Suzer S (2013) XPS for chemical- and charge-sensitive analyses. Thin Solid Films 534:1CrossRefGoogle Scholar
  7. 7.
    Copuroglu M, Sezen H, Opila RL, Suzer S (2013) Band-bending at buried SiO2/Si interface as probed by XPS. ACS Appl Mater Interfaces 5:5875CrossRefGoogle Scholar
  8. 8.
    Hüfner S (2003) Photoelectron spectroscopy: principles and applications. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Chen F, Schafranek R, Wu W, Klein A (2011) Reduction-induced Fermi level pinning at the interfaces between Pb(Zr, Ti)O3 and Pt, Cu and Ag metal electrodes. J Phys D 44:255301CrossRefGoogle Scholar
  10. 10.
    Popescu DG, Husanu MA (2013) Au–Ge bonding on a uniformly Au-covered Ge(001) surface. Phys Status Solidi RRL 7:274CrossRefGoogle Scholar
  11. 11.
    Popescu DG, Husanu MA (2014) Epitaxial growth of Au on Ge(001) surface: photoelectron spectroscopy measurements and first-principles calculations. Thin Solid Films. doi: 10.1016/j.tsf.2013.12.049 Google Scholar
  12. 12.
    Vrejoiu I, Le Rhun G, Pintilie L, Hesse D, Alexe M, Goesele U (2006) Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films. Adv Mater 18:1657CrossRefGoogle Scholar
  13. 13.
    Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797CrossRefGoogle Scholar
  14. 14.
    Vrejoiu I, Alexe M, Hesse D, Gösele U (2008) Functional perovskites—from epitaxial films to nanostructured arrays. Adv Funct Mater 18:3892CrossRefGoogle Scholar
  15. 15.
    Apostol NG, Stoflea LE, Lungu GA, Chirila C, Trupina V, Negrea RF, Ghica C, Pintilie L, Teodorescu CM (2013) Charge transfer and band bending at Au/Pb(Zr0.2Ti0.8)O3 interfaces investigated by photoelectron spectroscopy. Appl Surf Sci 273:415CrossRefGoogle Scholar
  16. 16.
    Apostol NG, Stoflea LE, Lungu GA, Tanase LC, Chirila C, Frunza L, Pintilie L, Teodorescu CM (2013) Band bending in Au/Pb(Zr, Ti)O3 investigated by X-ray photoelectron spectroscopy: dependence on the initial state of the film. Thin Solid Films 545:13CrossRefGoogle Scholar
  17. 17.
    Hamedi LH, Guilloux-Viry M, Perrin A, Cherkani MH (1998) On the epitaxial growth of PZT films by pulsed laser deposition. Ann Chim Sci Matér 23:377CrossRefGoogle Scholar
  18. 18.
    Hamedi LH, Guilloux-Viry M, Perrin A, Garry G (1999) Heteroepitaxial growth of PZT thin films on LiF substrate by pulsed laser deposition. Thin Solid Films 352:66CrossRefGoogle Scholar
  19. 19.
    Fujisaki Y, Torii K, Hiratani M, Kushida-Abdelghafar K (1977) Analysis and control of surface degenerated layers grown on thin Pb(Zr, Ti)O3 films. Appl Surf Sci 108:365CrossRefGoogle Scholar
  20. 20.
    Eastman DE (1970) Photoelectric work functions of transition, rare-earth, and noble metals. Phys Rev B 2:1CrossRefGoogle Scholar
  21. 21.
    Pintilie L, Stancu V, Trupina L, Pintilie I (2010) Ferroelectric Schottky diode behavior from a SrRuO3–Pb(Zr0.2Ti0.8)O3–Ta structure. Phys Rev B 82:085319CrossRefGoogle Scholar
  22. 22.
    Pintilie L, Dragoi C, Pintilie I (2011) Interface controlled photovoltaic effect in epitaxial Pb(Zr, Ti)O3 films with tetragonal structure. J Appl Phys 110:044105CrossRefGoogle Scholar
  23. 23.
    Arenholz E, Van der Laan G, Fraile-Rodríguez A, Yu P, He Q, Ramesh R (2010) Probing ferroelectricity in PbZr0.2Ti0.8O3 with polarized soft X rays. Phys Rev B 82:140103(R)CrossRefGoogle Scholar
  24. 24.
    Krug I, Barrett N, Petraru A, Locatelli A, Mentes TO, Niño MA, Rahmanizadeh K, Bihlmayer G, Schneider CM (2010) Extrinsic screening of ferroelectric domains in Pb(Zr0.48Ti0.52)O3. Appl Phys Lett 94:222903CrossRefGoogle Scholar
  25. 25.
    Dragoi C, Gheorghe NG, Lungu GA, Trupina L, Ibanescu AG, Teodorescu CM (2012) X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr, Ti)O3−δ. Phys Status Solidi A 209:1049CrossRefGoogle Scholar
  26. 26.
    Teodorescu CM, Esteva JM, Karnatak RC, El Afif A (1994) An approximation of the Voigt-I profile for the fitting of experimental X-ray-absorbtion data. Nucl Instrum Methods Phys Res A 345:141CrossRefGoogle Scholar
  27. 27.
    Mardare D, Luca D, Teodorescu CM, Macovei D (2007) On the hydrophilicity of nitrogen-doped TiO2 thin films. Surf Sci 601:4515CrossRefGoogle Scholar
  28. 28.
    Luca D, Teodorescu CM, Apetrei R, Macovei D, Mardare D (2007) Preparation and characterization of increased-efficiency photocatalytic TiO2−2xNx thin films. Thin Solid Films 515:8605CrossRefGoogle Scholar
  29. 29.
    Jupille J, Chandesris D, Danger J, Le Fevre P, Magnan H, Bourgeois S, Gotter R, Morgante A (2001) Resonant L2MV and L3MV Auger transitions in titanium dioxide. Surf Sci 482:453CrossRefGoogle Scholar
  30. 30.
    Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RM, Gale LH (1981) Empirical atomic sensitivity factors for qualitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211CrossRefGoogle Scholar
  31. 31.
    Gheorghe NG, Lungu GA, Costescu RM, Teodorescu CM (2011) Significantly different contamination of atomically clean Si(001) when investigated by XPS and AES. Phys Status Solidi B 248:1919CrossRefGoogle Scholar
  32. 32.
    Gheorghe NG, Lungu GA, Costescu RM, Popescu DG, Teodorescu CM (2011) Enhanced contamination of Si(001) when analyzed by AES with respect to XPS. Optoelectron Adv Mater Rapid Commun 5:499Google Scholar
  33. 33.
    Costescu RM, Gheorghe NG, Husanu MA, Lungu GA, Macovei D, Pintilie I, Popescu DG, Teodorescu CM (2012) Epitaxial ferromagnetic samarium and samarium silicide synthesized on Si(001). J Mater Sci 47:7225. doi: 10.1007/s10853-017-6672-z CrossRefGoogle Scholar
  34. 34.
    Gheorghe NG, Lungu GA, Husanu MA, Costescu RM, Macovei D, Teodorescu CM (2013) Structure, reactivity, electronic configuration and magnetism of samarium atomic layers deposited on Si(001) by molecular beam epitaxy. Appl Surf Sci 267:106CrossRefGoogle Scholar
  35. 35.
    Kurasawa M, McIntyre P (2005) Surface passivation and electronic structure characterization of PbTiO3 thin films and Pt/PbTiO3 interfaces. J Appl Phys 97:104110CrossRefGoogle Scholar
  36. 36.
    Chen Y, McIntyre P (2007) Lead zirconate titanate ferroelectric thin film capacitors: effects of surface treatments on ferroelectric properties. Appl Phys Lett 91:072910CrossRefGoogle Scholar
  37. 37.
    Pintilie L, Boerasu I, Gomes MJM, Zhao T, Ramesh R, Alexe M (2005) Metal–ferroelectric–metal structures with Schottky contacts. II. Analysis of the experimental current–voltage and capacitance–voltage characteristics of Pb(Zr, Ti)O3 thin films. J Appl Phys 98:124104CrossRefGoogle Scholar
  38. 38.
    Zubko P, Jung DJ, Scott JF (2006) Space charge effects in ferroelectric thin films. J Appl Phys 100:114112CrossRefGoogle Scholar
  39. 39.
    Pancotti A, Wang J, Chen P, Tortech L, Teodorescu CM, Frantzeskakis E, Barrett N (2013) X-ray photoelectron diffraction study of relaxation and rumpling of ferroelectric domains in BaTiO3(001). Phys Rev B 87:184116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura E. Stoflea
    • 1
  • Nicoleta G. Apostol
    • 1
  • Cristina Chirila
    • 1
  • Lucian Trupina
    • 1
  • Raluca Negrea
    • 1
  • Lucian Pintilie
    • 1
  • Cristian M. Teodorescu
    • 1
  1. 1.National Institute of Materials Physics Bucharest-MagureleMagurele-IlfovRomania

Personalised recommendations